NASA-CR-190614 /(//7755 6’/?/3/&/7’
JEYAKCE R
508 /

/157

Acquisition and Production of Skilled Behavior
in Dynamic Decision-Making Tasks

Status Repoi't
July 31, 1992

for NASA Ames Research Grant NAG2-656
Technical Monitor:

Robert J. Shively

NASA Ames Research Center e
~ Mail Stop 262-3 VT

Moffett Field, CA 94035

4,

Principal Investigator

Alex Kirlik
Center for Human-Machine Systems Research
School of Industrial & Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205

(NASA-CR-190614) ACQUISITION AND N92-31341
PROCUCTION OF SKILLED BEHAVIOR IN
DYNAMIC DECISIOMN-MAKING TASKS

5tatus Report, 31 Jan. - 31 Jul. Unclas
1992 (Georqgia Inst. of Tech.)
i59 p

G3/53 0115081



Overview

This status report describes work completed during the period January 31,
1992 to July 31, 1992. The following report describes two research projects. First,
an ecological task analysis of the Star Cruiser task was performed and
documented. On the basis of this analysis, a number of interface deficiencies
were identified. As described in the January 31 status report, these deficiences
will be eliminated through two alternative means: display enhancement and
decision aiding. These two forms of aiding will be subsequently compared.

At this point in time, a new display for Star Cruiser has been constructed
on the basis of the results of the ecological task analysis, as described below. In
essence, the enhanced display provides perceptual support for actions for which
the original display provided only meager or no support. An experiment is
currently being performed comparing the efficacy of the original Star Cruiser
display with the new, perceptually enhanced display. This experiment uses eight
subjects in each display group, and is scheduled to run for sixteen ten-minute
sessions for each subject. Each session uses a different initial conditions file. In
the following, we present empirical data on the first six sessions of this
experiment (the first six sessions beyond two half-hour training sessions).

The preliminary results are unequivocal. Performance in the perceptually
enhanced display condition averages 35% higher than performance in the
original display condition (performance measure is points scored). As can be
seen by the enclosed graph of the results, the learning curves for the group means
show no overlap over these sessions. It will be interesting to see whether this
difference is maintained, increased, or attenuated, over the following ten
experimental sessions.

The second research effort described here is completed work on modeling
skilled decision-making using neural network and genetic-algorithm machine
learning techniques. This section of the report consists of a Masters Thesis by
Ling Rothrock. '



Ecological Task Analysis of Star Cruiser

An ecological task analysis was performed on the Star Cruiser simulation.
Expert subjects were created by having them continually practice the game until
it appeared their learning curve had reached a plateau (approximately 20
sessions). These experts were then videotaped while playing Star Cruiser.
Verbal protocols and written questionnaires were also given to the subjects.
Reviewing these three items for each subject revealed the strategies the experts
were using. As a result, each task in the analysis is described in terms of how the
strategies involved it, whether or not perceptual cues existed to trigger that bit of
strategy, and whether or not cues existed to indicate the availability of the actions
comprising the task. The observations made during this analysis suggest
possible enhancements that may be incorporated into the simulation's display
interface. (These have not been included in this document.) Once an enhanced
interface has been created, additional subjects will be used to determine if it is
better than the original. The quality of the display will be measured by the
subjects' performances (indicated by their score and the number of errors
committed) on the new display compared to other subjects' performances on the
original.



Deploy Probe _

A probe may be deployed at any time except for when the Star Cruiser is
docked at the Star Base. Deploying probes has no effect on points or fuel
consumption and can therefore be done without great effect on the system states.
Subjects used the probes to obtain information concerning ninth orbitals and solar
systems' supply of information.

' When determining which solar system to go to, subjects would dispatch
probes to those systems, usually those with the brightest suns, under
consideration. They would then be allowed to view the planets in those systems
and ascertain the amount of information available for collection in each. This
strategy was often unnecessary since the brightest suns, by definition, contained
the largest amounts of information. The only benefit it served was to help choose
which system to go to amongst those with the brightest suns. Other factors often
contributed to this decision as well, though. Proximity to the Star Cruiser, the
closeness of neighboring solar systems (subjects' strategies involve collecting
more data from a grouping of solar systems), and the remaining time in the
session often served as determinants in deciding which solar system to enter first.

As mentioned, probes were also used to locate the ninth orbital around a
sun. Subjects used their knowledge of the probe's orbital path to help locate the
proper orbital for Star Cruiser. This was not necessary at all times since other
cues exist to help find the proper orbital (refer to Move Star Cruiser into Orbit).

These strategies are driven by the subjects' desire to obtain additional
information about the galaxy. There are no cues that the subjects perceive which
cause them to perform this action. In other words, the need to perform this action
is only inferred by the subjects, no information is given instructing them to do so.
This method of learning about the galaxy is generally a waste of time, however.
Perceptual cues currently exist to provide all the same information to the subjects
(i.e., sun color, planets orbiting near the ninth orbital). As previously stated, the
only time that probes may not be deployed is when the Star Cruiser is docked at
Star Base. There are no perceptual cues, though, that inform the subjects of this.
Only their inability to do so suggests to the subjects that a probe cannot be deployed
at that time. Also, the only cue that exists to indicate that a probe may be selected
for deployment is when the user is able to highlight one at the top of the screen.
This poses a problem, however, when the Star Cruiser enters a solar system
while a subject is attempting to perform this action. On two separate occasions,



with two different subjects, this resulted in the Star Cruiser crashing into the
sun. The subjects selected a probe to deploy while the Star Cruiser was in the
galaxy view. During this process, the cruiser drifted into a solar system. The
subjects’ initial, and only, reactions upon seeing the Star Cruiser drifting towards
the sun was to apply a thrust to the cruiser away from the sun. The probe,
however, was still selected for deployment. As a result, the only actions the
subjects could do successfully would be either to pull a string from the Star
Cruiser to the sun to deploy the probe or to unselect the probe. Since the subjects
were concerned solely with applying a thrust to the cruiser, they did not realize
that they had to perform one of the other actions first. As a result, the thrust was
not applied to the Star Cruiser and it crashed into the sun. Though their inability
to perform the desired thrust action serves as a cue, it is embedded to deeply
within the structure of the interface to be of use. The subjects simply feel that the
applied thrust was not great enough to overcome the sun's gravitational pull and
they continually try the action again. Some other form of cue is required in this
situation to indicate to the subjects that they are performing an action
unsuccessfully and that they should attempt another. The cue must serve to
enlighten the subjects that their intended action is one that is not readily
available. : o

Overall, there is no special need for using perceptual cues to inform the
user when to deploy a probe. Most information that can be gained by doing so is
present at all times. Cues that exist, though, at the depth structure level,
especially those which indicate that the user needs to unselect a probe to perform
a thrust, need to be brought to the surface. In addition, perceptual cues should
indicate to the user when it is and is not possible to deploy probes.

Recall Probe

A probe may only be recalled when the Star Cruiser is in orbit in the same
solar system as the probe and the current view is of that system. If these
conditions are met, then the user may select the probe and draw a line back to the
Star Cruiser to recall it. Recalling a probe has no effect on fuel consumption or
points and can be time consuming. The only benefit is that the user now has an
additional probe which may be deployed. Therefore, if the user determines that
enough probes are present on board the Star Cruiser to complete the session, then



there is no reason why a probe should be recalled at any time. This agrees with
the strategies of most of the expert subjects. One subject would, however, recall a
probe while Star Cruiser was waiting for the collection tools to finish gathering
information from the planets. His reasoning was that since Star Cruiser has
visited the solar system, the amount of information present will always be
displayed on the sun in the galaxy view. Therefore, if there are few probes which
may be deployed, since he is not performing any other actions while waiting for
the collection tools, he can recall the probe and not waste any time. This was also
dependent on his confidence of being able to locate the ninth orbital if he ever
returned to the same solar system in the future. Of course, if all information has
been gathered from the planets in that system, then there will be no need to ever
return.

Though there are no perceptual cues on the surface which indicate that
this action should be performed, the user may determine to do it based on the
number of probes displayed along the top of the screen. Whether or not a user will
recall a probe will ultimately depend on whether or not it is felt that it will be used
again. Currently, only the user's strategy of the session, including the time
remaining and where the cruiser should be sent to in that time, will contribute to
the decision to perform this action. As with the subject discussed previously,
there are those who do always recall the probes though, if, for nothing else, to
practice the task of recalling an object. Because of this action's insignificance to
the overall goal of the user (collect information and return it to the Star Base), as
well as everyone possessing a different strategy of the current session being
played, it is probably unnecessary to incorporate cues which directly inform the
user that a probe should be recalled.

Perceptual cues which inform the user when this action can and cannot be
performed are also lacking at the surface. Though subjects had very little
difficulty with determining this, there does exist the potential for some confusion.
Since a probe may be deployed at almost any time, the risk is present that a user
may think that it can be recalled at almost any time. This line of reasoning is
further supported by the fact that in the galaxy view, the deployed probes are
pictured next to their appropriate solar systems. Though this bit of information
may be helpful in determining where the probes are located, it can also cause the
user to adopt the wrong retrieval strategy. To avoid the mis-specification between
the cue (displayed probes) and a possible action it may indicate (can recall the
probes), the cue should either be altered or eliminated. This is so even though the



user's inability to recall a probe may indicate that s/he is using an improper
retrieval strategy. The key here is not to correct the user once the mistake is
made, but to prevent the mistake from being made in the first place.

A user may relate the retrieval of a probe to that of a collection tool. This
would then serve as a cue to the user: gince a tool may only be recalled while the
Star Cruiser is in orbit, the same theory may be devised for the probes. Though
this would be correct, the users should not be subjected to the burden of
rationalizing this for themselves. This similarity between recalling the tools and
the probes should be evident from the display itself. Taking all into consideration,
for the display to contain the proper cues, it must not only inform the user of when
the probes can be recalled, but it must not mislead the user into thinking they can
be when they truly cannot. '

Deploy Collection Tool

Only under certain conditions may a user deploy one of the four collection
tools: satellites, robot miners, science ships, and minerships. The Star Cruiser
must be in orbit around a sun which also has orbiting planets. In addition, the
user must be viewing that system. If the user wishes to deploy either a science
ship or a minership, then planets which support life, green planets, must also be
present in the solar system.

Each subject possessed a different strategy for determining where and
when to deploy collection tools. One subject, for instance, would first send out
science ships and minerships whenever possible before satellites and robot
miners. Her strategy was to collect as much information as possible as quickly as
possible. She viewed the collection of data and resources using the science ships
and minerships to be quicker since she would not be required to make as many
deployments. She, more than any other subject, appeared to have the greatest
difficulty with performing the necessary tracking task required to deploy the
collection tools. Another subject would normally deploy only satellites and robot
miners since these did not move from planet to planet and she was thus better
able to remember how much information they had collected. Only if one green
planet was present would she then send out a science ship or minership. This
strategy was developed in order to reduce the risk of a science ship or minership
collecting to much information and thus overloading the cruiser when it is



recalled. The subject would also deploy as many tools as she had available, even if
the cruiser would not be able to carry all of the information. It was her reasoning
that she could always return to the system after unloading the Star Cruiser at.the
Star Base and recall the remaining tools. A third subject had yet a different
strategy for deploying collection tools. He, like the first subject, would deploy
science ships and minerships first. Unlike the first subject though, this subject
would send out multiple science ships and minerships to speed up the collection
process even more. This subject differed from the other two in that, after
recalling the other tools, he would deploy satellites and robot miners to other
planets to collect a fraction of their data and/or resources. His strategy focused on
returning to the Star Base with the Star Cruiser as fully loaded as possible
whereas the other subjects were content with the cruiser not being as full. He
usually did not leave tools in the solar system once he had the cruiser leave.
There did seem to be one bit of strategy that all subjects had in common though.
In deciding where to send a collection tool, the subjects generally did not send
more than one data collecting tool (satellite or science ship) or resource collecting
tool (robot miner or minership) to the same planet.

The fact that all subjects had differing strategies serves as evidence to the
lack of perceptual cues that exist for aiding the users in deciding when and where
to deploy the collection tools. If these cues were present to indicate when to
perform the action, then there would most likely be more similarities between
each subject's strategy. This is illustrated by the subjects’ common attitude that if
a tool is already collecting one type of information from the planet, then no other
tool which collects similar information should be deployed to that planet. A cue
does exist for this even though it is informing the subjects not to perform the
action rather then to do so. When a collection tool is deployed to a planet, it is
displayed next to it. Therefore, the user can see which tools have been sent to
which planets. As a result, the user knows that the deployment of any other tool
to that planet (which collects similar information) is essentially pointless since
the tool presently there will collect all of the data or resources that the planet
contains. The only benefit that deploying another tool which collects the same
type of information to that planet would possibly serve is that one tool will not be
transporting to much to the cruiser, and thus overload it, once it is recalled. This
never seemed apparent to the subjects since they were not observed performing an
action of this type. This is mostly likely due to the lack of cues which would



inform them of how much each tool has collected, let alone whether this action
was even possible.

None of the subjects appeared to have difficulty determining when the
deployment of tools could be performed. The subjects were instructed during their
training about the conditions that must be met in order to perform this action.
With this knowledge, they were able to recognize easily when the conditions were
satisfied. Perceptual cues, such as the Star Cruiser being highlighted upon
reaching orbit, the absence of the cruiser and/or the planets when the subjects
were looking at a view of the galaxy or another solar system, and whether or not
any planets were present in that solar system at all, also provided the necessary
support in determining when the action could or could not be performed. The fact
that the tools were always present at the top of the screen, thus appearing as if
they could be selected even when they could not, did not cause the subjects any
difficulties. If, for some reason, they tried to select one of the tools when that
action could not be performed, they would soon discover that their attempt was not
allowed due to their failure to do so. Overall, the cues were successful at
specifying the availability of the action.

There was, however, one area of underspecification. Though they knew
they could perform some type of deployment, the subjects had problems
determining which tools should be used to collect which information and which
type of planets they could be sent to. Most of the subjects eventually memorized
the differences between the tools. There was one subject though, that had
difficulty throughout the sessions. The tools themselves provide no cues as to
what they do. They are not coded in any fashion whether it be, for example, color,
size, or location (at the top of the screen where they may be selected). Some form
of cues should be incorporated into the display in an effort to assist the user.
Successful implementation of such cues should result in the user's reduced
confusion concerning each type of tool's functions and constraints as well as
reducing their need to rely on memory to determine them.

Deploying collection tools was consistently rated as one of the more difficult
actions to perform. Though much of this is attributed to the tracking task
involved, some of the blame can be placed on the amount of mental effort the
subjects had to use in order to accomplish the action. This is suggested by this
action being rated slightly more difficult then that of recalling a tool which
essentially incorporates the same type of tracking task. The subjects had to
remember which type of planet each tool could be sent to as well as what each




collected. Even more difficult though, they had to determine exactly which planet
to send a tool to. This often required the subject to take into consideration the
amount of data/resources available on that planet (indicated by the "pie pieces”
displayed on each), the amount currently on board the Star Cruiser, the amount
of data/resources being currently collected by other tools, whether the deployed
tool would move from planet to planet, and how much time was left in the
mission. Though much, but not all, of this information was presented to the
subjects in one form or another, they were required to interpret each bit and relate
each piece of information to the others in order to make a decision. This was often
quite complex and thus it is understandable why this action was rated to be so
difficult. The proper use of present perceptual cues, in addition to the
introduction of new ones, should help to make this action an easier one for the
users to perform.

Recall Collection Tool

In order to recall collection tools, similar criteria as that for deploying the
tools must be satisfied. This includes viewing a solar system where the Star
Cruiser is in orbit. The only difference in the criteria is that, in that system, tools,
deployed earlier, must still be located at the planets.

Subjects generally used similar strategies in determining when it was, and
was not, appropriate to recall a collection tool. The subjects would recall a tool if
two conditions were satisfied. The first is that the tool had finished collecting all
of the data/resources that were available. The other was that there was room
aboard the cruiser to carry the collected information. The remaining time left in
the mission also played a role in determining if a tool should be recalled or
abandoned so that the cruiser could return to the Star Base with what was already
on board.

The subjects had very little difficulty in determining when they could
perform this action. Cues were present and noticeable to indicate when a tool
could be recalled. As in deployment, the highlighting of the Star Cruiser once it is
in orbit informs the user that that portion of the criteria has been satisfied. In
addition, the subjects knew which tools could be recalled due to them being
displayed next to a planet in the solar system. Confusion does exist, however, in
determining which tool will be recalled first when multiple tools are present at



the same planet. Since their displayed icons overlap, there is no apparent cue to
indicate which tool will be recalled first when the user selects one. In order to
overcome this, the subjects were instructed that the order of recall was identical to
the order, from left to right, of collection tools displayed at the top of the screen. It
was observed though, that even with this knowledge, the subjects would attempt to
recall one tool from a planet containing multiples, and inadvertently recall the
wrong one. As a result, they would usually recall the correct tool and then deploy
the one that was incorrectly brought back in order to finish collecting the available
information at that planet. This problem could be avoided by simply locating each
type of tool in a different position around the planets. With this exception, the
availability of this action was generally well perceived by the subjects from the
existing perceptual cues.

The ease in deciding whether or not to perform this action was variable
throughout the mission. It greatly depended on the second of the two criteria
mentioned earlier - how much data/resources the Star Cruiser currently had on
board. If the cruiser was empty, then sufficient perceptual cues existed to suggest
to the user that s/he recall a tool. The fact that the tool had completed collecting
all possible information would be indicated by the disappearance of the "pie
pieces” which show how much data/resources is present on the planet. Since the
gauges which convey how much information the Star Cruiser contains would be
empty, the user would know that recalling a tool was more than likely an
appropriate action to perform. As the Star Cruiser contained more and more
information though, the decision to recall a tool became more and more difficult.
Even though the user could still readily determine if the tool had completed its
collection task, insufficient cues existed to inform the user whether or not the
information collected could be safely loaded onto the cruiser. The problem is that
no direct relationship exists between how much of the information, represented by
the pie pieces, is collected and how much the gauges indicating the cruiser's load
will increase once those tools are recalled.

Unless it was learned exactly how many pie pieces completely loaded the
cruiser (which two subjects did over ten sessions), the user would never be quite
sure how much additional data/resources can be brought onto the cruiser before it
exceeds capacity. Even when it was learned that, for example, three full planets
completely loaded the cruiser, difficulties still arose when the subjects were forced
to deal with planets which contain only a fraction of their total capacity of
information. This problem was compounded further by the pie pieces for two



reasons. One is that the same size pie piece represented a range of amount of
data or resources. For example, a half of a pie piece (one full pie piece equals one
half the size of the planet) of data could represent between one-fourth and one-half
of the planets capacity for a type of information. There is no way to determine the
exact amount. Contributing even more to the problem is that the gauges
indicating the cruiser's current load merely present qualitative information - how
full is the Star Cruiser. As a result, it is also difficult to determine exactly how
much data/resources the cruiser already contains as well as how much the
gauges will increase by collecting a certain size pie piece. The second reason is
that the pieces will disappear as the information is collected. Though this serves
as a good cue indicating when the collection process is complete, unless the user
remembers how big of a pie piece was present before the tool was deployed to the
planet, there is no way for the user to know how much data/resources the tool has
collected. This is especially true for science ships and minerships which can visit
multiple planets before being recalled. This is an even greater problem when the
user has done something (i.e., returned the cruise to the Star Base) which results
in the viewing of the galaxy or another solar system.

The goal of the user is to collect as much information as possible and return
it to the Star Base. As a result, this action of recalling collection tools is one of the
on their ability to make good decisions concerning when and when not to recall a
collection tool. The display should be designed to aid the decision-making process,
not hinder it. Therefore, enhancements should be made to the current display in
order to improve the users’' chances of success. Creating gauges and pie pieces
which have direct telatidnships i8 one such improvement. Others may include
memory aids which will help the users remember exactly how much information
has been collected by a tool. Warnings can also be incorporated indicating when
the Star Cruiser has reached near capacity or even when the recall of a particular
tool will overload it. These are just some of the possible enhancements which can
assist the users in deciding when to recall a tool. As a result, not only should the
users' performance of this action improve, but so should that of their overall
mission as well.

Place Star Cruiser Into Orbit



The Star Cruiser will achieve orbit around a sun if it passes through the
sun's ninth orbital at a slow enough speed. This of course means that the user
must place the cruiser in the solar system view which contains the sun to be .
orbited.

Subjects shared a similar reason for wanting the Star Cruiser to obtain
orbit - to deploy collection tools. Unless they had taken the cruiser out of orbit
while tools were collecting information, the subjects generally did not try to place
the ship into orbit for the sole purpose of recalling collection tools. This also is
true for probes. If a subject made the decision to recall a probe, it was only while
the Star Cruiser was already in orbit.

Only previous instruction lets the user know that s’he must obtain orbit.
Since it is known that the Star Cruiser must be in orbit in order to perform any
actions regarding the collection tools, once the decision has been made to deploy or
recall a tool, the user knows that the cruiser must be placed in orbit. Thus, in a
sense, those cues which aid the user in deciding whether or not to deploy or recall
tools (i.e., presence of pie pieces on planets; absence of planets) also serve as cues
to put the ship into orbit. There is, however, no direct mapping between the
desired action of deploying or recalling a tool and the necessary means for doing
so such as first obtaining orbit. As a result, those users who do not receive
instructions prior to attempting a mission may try to deploy a tool while the
cruiser is not in orbit. Of course, their failure to complete this action will indicate
to them that something is wrong, but they would most likely be unable to
determine what.

- Assuming that the user knows that the Star Cruiser must be in orbit, very
few perceptual cues are required to indicate the availability of the action.
Knowing that the ninth orbital must be located, the user generally realizes that
only in a view of a solar system may this action be attempted. Thus, once the
cruiser moves into a view of a solar system, no other requirements must be met in
order to attempt this action.

The difficulty concerning this action, according to the subjects, was not in
determining when to perform the action nor if the action could be performed. It
was in performing the action itself that presented the most trouble. The subjects
often complained about how hard it was to locate the ninth orbital, let alone get the
Star Cruiser moving at the proper unknown speed so it would follow the orbital
around the sun. As a result, they were often required to continually adjust the
cruiser's direction and speed until the cruiser reached orbit. A frustrating



process which often wasted valuable time. Regarding the speed, there are no cues
whatsoever which would indicate to the user that the ship has the proper velocity
for obtaining orbit. Only upon seeing the cruiser obtain orbit (Star Cruiser is
highlighted) will the user have any idea of what the proper speed is. The user,
however, usually has difficulty remembering what the speed was, or duplicating
it, since s/he is required to match it to a pictorial representation of the cruiser's
movements. No quantitative information is provided. There are several cues,
though not intuitive, which may be utilized in locating the ninth orbital around a
sun. The first is to use the planets as a guide. Eventually it should be learned
that the furthest orbital for a planet is one less then that of the cruiser. This
allows the user to approximate the ninth orbital's location based on the orbitals of
the existing planets. Another cue that may be learned over time is that the orbital
is elliptical in shape and that the top of it is aligned with the top of the solar
system view. The user can then "picture” the path that the orbital takes starting
at the top of the view and attempt to have the cruiser intercept that pictured path.
A third method for finding the orbital, one consistently performed by several of the
subjects, is to dispatch a probe in the solar system where the cruiser is to obtain
orbit. Once again something that is learned through practice, the users soon
realize that the probe travels around the sun in the ninth orbital. This "trick"
allows the user to deploy a probe to identify the orbital which can then be easily
located while attempting to place the cruiser. So though cues do exist to show
where the orbital is located, they are not readily perceived by the user unless their
existence has been learned.

While the amount of perceptual cues indicating that this action should be
performed and that it can be might be sufficient, additional cues should be added
to assist the user in placing the Star Cruiser into orbit. To be effective, the cues
would need to alert the user to the location of the ninth orbital. This can simply be
accomplished by highlighting the orbital in some manner. In addition, some
form of a cue should be used to indicate when the cruiser is at the required speed
for obtaining orbit. This may include, for example, the use of a "speedometer” or
changing the color of the cruiser. Without these additions, users will face similar
troubles and suffer from similar frustrations as they attempt to place the Star
Cruiser into orbit.

Remove Star Cruiser From Orbit



This action may only be performed if the Star Cruiser is, obviously, in orbit
in some solar system and the user is viewing that system. Subjects usually took
the cruiser out of orbit only if one of two conditions was met. If all possible
information had been collected in the system, and all tools had been recalled, then
the subjects removed the cruiser from orbit in order to send it to another solar
system or to the Star Base. On the other hand, if more information could still be
collected but there was no additional storage space on board the ship, then the
Star Cruiser was taken out of orbit as well. In this case, the cruiser was returned
directly to the Star Base. :

The number of perceptual cues which would lead the user to perform this
action are minimal. When presented a solar system view where no tools or probes
are deployed and the planets, if there are any, no longer contain any information
as indicated by the pie pieces, then the user should realize that there is no reason

‘to have the cruiser in orbit. Others cues may also be present which may lead to
the decision to remove the Star Cruiser from orbit. These, however, do so
indirectly since they actually inform the user that another action should be
performed (refer to Dock Star Cruiser at the Star Base). In order to perform this
action though, the user must remove the cruiser from orbit first. As a result,
although the means are slightly different, the results they obtain are similar. In
this case, this is satisfactory since the relationship between the two actions (one
must precede the other) is an easy one for the user to make. The action of
removing the ship from orbit is easily triggered by the cues which currently exist
and, thus, no modifications are necessarily required.

As mentioned before, the user must be viewing the solar system which
contains the orbiting Star Cruiser in order to perform this action. If not, then the
user's inability to successfully remove the cruiser from orbit serves as a cue that
the action cannot be performed. Otherwise, there are no other cues which
indicate this to the user, nor that the user can perform the action. It was noted,
though, that subjects very rarely, if ever, attempted to remove the Star Cruiser
from orbit when it was impossible to do so. In addition, whenever they decided to
perform the action, they were in a situation which permitted the action. Thus, it
appears that whenever the user's strategy calls for removing the cruiser from
orbit, no additional cues are required to show the availability of that action.

Problems do arise, however, when the user does not wish to remove the
cruiser from orbit, but does so accidentally. This is a result of the aforementioned



lack of cues which indicate that this action may be performed. Several attempts
made by the subjects to deploy tools resulted in their accidental removing of the
Star Cruiser from orbit. When deploying a tool, after selecting it from the top of
the screen, the user is required to select the Star Cruiser as it is travelling around
the sun. If the user is unable to track and select the ship properly, then the tool is
unselected. The subjects would not realize this and attempt to select the cruiser
again. If successful at the second attempt, since the tool is no longer selected,
they would actually be placing a thrust on the cruiser. This more than likely
pulled the ship out of orbit at an undesirable time. This error was often
experienced during the earlier sessions. Even with more practice, the mistake
was still made, though not as frequently. The subjects learned that they needed to
select the tool again before selecting the cruiser. Some form of cue should be
present, however, to indicate to the user when a string from the cruiser will
deploy a tool or probe or when it will act as a thrust. In other words, a perceptual
cue should be implemented which will inform the user of the availability of this
action.

Dock Star Cruiser At Star Base

The Star Cruiser can be docked at the Star Base if it is moving around in the
galaxy and the user is viewing it. The cruiser must be traveling at a slow enough
speed as it passes the base in order for it to dock.

Subjects shared similar strategies in deciding when to dock the cruiser at
the Star Base. Any one of three situations would result in the subjects
abandoning their current activities and performing the necessary actions that
would lead to the cruiser's docking. The main reason people docked the cruiser
was when they wished to unload its contents. Some subjects attempted to fill the
cruiser as full of information as a solar system's planets would allow, while
others were satisfied with partial fillings. Another factor which often led to
subjects moving the ship to the Star Base was the time remaining in the session.
If the cruiser had some information on board and time was nearly expired, the
subjects would dock the cruiser as quickly as possible in order to increase their
point total. The third factor which compelled people to perform this action was
the amount of fuel the cruiser had remaining. Lack of fuel would force subjects to
return the cruiser back to the Star Base in order to refuel. Essentially, as long as



the cruiser had enough cargo space and fuel, the subjects were content with
keeping it moving through the galaxy and collecting information from the various
solar systems.

The availability of this action was usually not questioned by the subjects.
Though not often attempted, an inability to maneuver the Star Cruiser while it is
located somewhere other than the current view provides the necessary cue to the
user that the action cannot be performed. Due to the nature of this action though,
this is not often enough. In order to dock the cruiser at the base, the user may
have to, or wish to, perform other actions first. For instance, if the Star Cruiser is
in orbit, the user must take it out of orbit before s/he can dock it at the Star Base.
Therefore, in some cases, the availability of this action depends on that of others
and thus the cues which signify the availability of those other actions become
gignificant. The subjects did not seem to have trouble with this aspect of the
docking action. They took into account such relationships between actions and
performed them accordingly. This does not infer though, that the difficulties
which existed for the other actions are no longer. The user still runs the risk of
experiencing those troubles resulting from inappropriate cues that were
discussed under each of those individual actions.

From the subjects’ performances, there appeared to be several perceptual
cues which led them to perform this action. This is especially true when
considering the cargo space and time factors. The gauges depicting the amount
of cargo space aboard the Star Cruiser were often referred to during the collection
of information. As a result, the status of the ship's cargo space was often known.
Thus, if the user deemed it necessary, the Star Cruiser would be returned to the
Star Base. The presence of the timer during the mission provided the subjects
with the necessary information concerning the time remaining. It too was often
checked to determine if the Star Cruiser should be returned to the Star Base, or if
any other actions should even be attempted.

The subjects often ran into difficulty when it came to the third factor. The
Star Cruiser's fuel level was very rarely monitored by the subjects. As a result,
the cruiser would explode, thus ending the mission, much to the surprise of the
user. This happens even though there exists a fuel gauge monitoring the amount
remaining in the cruiser. A possible explanation for this is that while the
cruiser is in orbit, the subject is solely concentrating on the collection of
information. Thus, the only gauges of concern are the cruiser's storage capacity
gauges. In addition, since no thrusts are being applied to the Star Cruiser, no



fuel is consumed and therefore there is no need to monitor the fuel gauge. If the
cruiser is not in orbit, then the subjects appeared to be more concerned with
steering the ship through the solar systems and galaxy in order to avoid it from
crashing into any suns and/or to make sure sure it is heading back to the Star
Base. Very little concern is placed on the fuel consumption gauge. Thus, if only a
small amount is present, since the subjects were likely not to notice, after
performing several thrusts, the ship would explode. This was very noticeable
whenever the subjects had difficulty controlling the speed of the cruiser. Since no
cues exist which convey this information to the user (refer to Place Star Cruiser
Into Orbit), it sometimes took several attempts to get the cruiser travelling at the
proper docking speed. This of course may only involve small thrusts, but they can
be numerous. As a result again, the ship will run out of fuel and explode.

This is a problem resulting from the perceptual cues' overspecification of
the action. Too many cues exist independent of one another. The user is unable to
efficiently monitor, identify, or notice all cues. Therefore, the same amount of
information that is available to the user should somehow be restructured. In
doing so though, no additional effort, mentally or physically, should have to be
exerted by the user in order to successful determine when to dock the Star Cruiser
at the Star Base. One possible method for accomplishing this is to reduce the
amount of independent cues. For example, combining the information presented
by multiple cues into one cue should help the user in determining when to
perform this action. Whatever the method though, care must be taken that the
modification does not result in the action becoming underspecified, mismatched,
or even more overspecified than before.

Release Star Cruiser From Star Base

This action was rated by the subjects as the easiest which involves
movement of the Star Cruiser. Not only is it easy to perform the action, applying a
thrust to a stationary object, but determining when to perform the action is simple
as well. Unless the amount of time remaining in the mission is so low that
nothing can be accomplished or all information within the galaxy has been
collected, the subjects would remove the Star Cruiser from the Star Base
immediately after it had docked. .



Since the users cannot perform any other actions that affect the status of
the galaxy while the cruiser is docked at the Star Base, they understand that in
order to continue achieving their goal of collecting information, they need to pull
the cruiser away from the base and have it travel towards one of the solar
systems. This serves as a forcing function which guarantees the users
performing the action if they are going to better their performance. In a sense
then, the requirement to remove the cruiser from the base in order to affect the
status of the galaxy is enough to inform the users that they should perform this
action. Therefore, no additional perceptual cues are required.

The only time this action would not be available to the user is if the current
view is of a solar system. Only when viewing the galaxy is the user capable of
though, the cruiser would not even be displayed. Thus, the absence of the cruiser
signifies to the user that a thrust cannot be applied to the ship to move it away
from the dock. Whenever the user is viewing the galaxy, however, s’he may
easily apply the thrust and pull the Star Cruiser away from the base. Since it was
apparent that the subjects consistently knew about the availability of this action,
no further perceptual cues are warranted.

Change View To Galaxy/Solar System

Whenever subjects performed this action, it was to gather information
which would help determine the Star Cruiser's next movement. With the cruiser
in the galaxy, subjects would select a view of a solar system to assess the amount
of information available on its planets. Different solar systems would be selected
until the subjects determined that one contained enough information to justify
sending the cruiser there. The cruiser's next movement would then be towards
that particular solar system. If the cruiser was present in the solar system, most
always in orbit, the subjects often selected the galaxy view in order to determine
which side of the system the cruiser should exit from. The subjects who
performed this action for this reason found it necessary to do so since the thrusts
they applied to the cruiser to break it out of its orbit often sent it flying out of the
solar system uncontrollably. Information obtained from viewing the galaxy, such
as the location of neighboring solar systems or the location of the Star Base, often
helped the subjects to either prevent the cruiser from sailing into another solar



system and crashing into it's sun or find the shortest route for the cruiser to
return to the Star Base or to travel to another solar system. Often these alternate
views are selected while the subject is waiting for the completion of another action
(i.e., tools collecting information, cruiser traveling through galaxy, cruiser
docked at the Star Base).

Though some subjects successfully employed these strategies, some do not.
Even though they were told about the option of different views and how to access
them, some subjects would forget of its existence. This is because no perceptual
cues are present to inform the user of the action's availability, even if the user
remembers it from training. There is nothing about the display which lets the
user know that by selecting a sun in the galaxy view, or the sun in the solar
gystem view, s’he can observe a different map. Though there are cues which
indicate which solar systems may be viewed (the presence of the pie pieces on the
suns), these still do not inform the user that the action can be performed.

Additionally, cues which assist the user in determining when to perform
this action are lacking. Only as a result of practice and habit does the user
incorporate this action into a strategy. And then again, the multiple views are
only employed if s/he fails to remember the various states of the system. As a
result, this action currently does little to help relieve the memory burden placed
on the user.

There is essentially no perceptual cues which specify this action. The
subjects who did perform it though, generally had an easier time determining
where to send the Star Cruiser. They also seemed more capable of getting the
ship there utilizing the smallest amount of effort. Therefore, the action has merit
and the environment should support it. In order to do this, perceptual cues need
to be introduced which will aid the user in determining if and when to perform
this action, as well as whether or not the action can be performed.

Summary

The movement of the Star Cruiser, as controlled by the users, is determined
by a number of factors. These factors include the distance the ship has to travel,
the configuration of solar systems within the galaxy, the cruiser's amount of fuel,
and the time remaining in the mission. They all play a vital role in the
determination of where the Star Cruiser needs to go and how it is going to get



there. All of this information is readily available to the user via the display
interface. In addition, they all serve as cues which contribute to the decision to
perform other actions. Quite often, the user elects to perform an action but
cannot, or will not, do 80 until another is performed. Many of the actions are
related through such a hierarchy. For example, a subject may elect to remove the
Star Cruiser from orbit. As a result, s/he might first perform the action of
viewing the galaxy to determine the cruiser's destination and exit path and then
actual remove the cruiser from orbit. Such relations can be as simple as this, or
they may be more complex. The action of returning information to the Star Base
may involve the user first deploying a probe, viewing the solar system containing
that probe, steering the cruiser into that system, obtaining orbit, deploying
collection tools, recalling the tools, removing the cruiser from its orbit (which
itself may require multiple steps), steering it through the galaxy, and finally
docking it at the Star Base.

The user must clearly understand these relations if any acceptable
performance is going to be obtained. The perceptual cues throughout the
environment play a significant role in this process. The cues should accomplish
two goals. The first is that they should always let the user know when a certain
action may be performed. Secondly, if an action is unavailable, then cues should
specify to the user what actions need to be performed in order to make the
unavailable one possible. This process should repeat until the user is presented
with an available action that s/he knows will help achieve the availability of the
original action. Whenever breakdowns is this process occur, where the user does
not readily know what to do next or if it even can be done, then the existing
perceptual cues should be investigated and the determination made about
whether new cues should be used, current cues should be eliminated, or multiple
cues should be combined.

The preceding discussion concerning Star Cruiser's possible actions
attempted to accomplish this. The strategies of expert subjects were examined to
determine when a particular action was likely to be performed. The subjects’
abilities to perform these actions were then evaluated. Possible explanations for
the ease or difficulty of each, based on the perceptual guidance supplied within
the Star Cruiser environment, were also offered. As a result, areas of
improvement can now be suggested. These improvements should concentrate on
improving Star Cruiser's environment so that, where it failed before, the



perceptual guidance afforded will specify what actions the users wish to do as
well a8 whether those actions can be performed.

Task Analysis Results: Enhancements

From the ecological task analysis performed on the following actions, certain
factors were discovered that warranted possible enhancements in order to
improve user performance. Listed for each action are those factors along with
suggested enhancements based on perceptual cues and decision aids.

Choose Star Cruiser’'s Destination

1) cruiser's amount of fuel
Perceptual Cue Enhancements:
- Fuel gauge will be modified to make fuel level more noticeable.

Decision Aid Enhancement Features:

- The aid will indicate whether the cruiser needs to return to star base in
order to refuel.

- A ranked list of possible destinations for the cruiser will be indicated to
the user (through color coding or messages in a window area) based
partially on whether the cruiser has enough fuel to fly to that
destination from its present location and then fly to the star base.

2) amount of information contained within solar system
Perceptual Cue Enhancements:

- Color of sun will indicate amount of information contained within
soallar system relative to amount of information contained within
galaxy.

- Use "Ghost Images" on suns in galaxy view to depict amount of
information once present in system (user will then know if cruiser
has previously collected information from that system).

Decision Aid Enhancement Features:
- A ranked list of possible destinations for the cruiser will be indicated to
the user (through color coding or messages in a window area) based

partially on amount of information contained within each solar
system.

3) cruiser's remaining information storage capacity
Perceptual Cue Enhancements:
- Gauges indicating cruiser's storage capacity will be altered to
resemble those depicting the amount of information contained on a



planet (pie charts). User can then compare shape of pie piece on
planet to empty space in pie gauges representing storage capacity to
determine if amount of information will fit onto cruiser. (Simpler to
incorporate then polygon-changing display.)

Decision Aid Enhancement Features:
- The aid will indicate whether the cruiser needs to return to star base in
order to unload the information on board the cruiser.
- A ranked list of possible destinations for the cruiser will be indicated to
the user (through color coding or messages in a window area) based
partially on whether the cruiser has any remaining capacity for the

type of information available within each solar system.

Collect Information
(Combination of Deploy Collection Tools and Recall Collection Tools)

1) tools allowed to deploy
Perceptual Cue Enhancements:
- Color coding tools selection bar to facilitate determination of which
tools collect what and where they may be deployed to.
- Dim tools when they cannot be deployed

Decision Aid Enhancement Features:

- A ranked list of tools to be deployed will be indicated to the user
(through a change of color of a message) based partially on whether
that tool can be legally deployed in that solar system (for example, if
there are no life sustaining planets in the solar system, no manned
ships may be deployed).

- After a tool has been selected by the user, the aid can then indicate a
ranked list of planets to deploy the tool to (through a change of color or
a message).

- The aid will indicate whether the user is trying to deploy an
inappropriate tool to an inappropriate planet (for example, a manned
ship to a planet which does not support life, or a manned ship to a
planet without any information).

2) amount of information contained within solar system
Perceptual Cue Enhancements:

- Color of sun will indicate amount of information contained within
s:llar system relative to amount of information contained within
galaxy.

- Use "Ghost Images" on suns in galaxy view to depict amount of
information once present in system (user will then know if cruiser
has previously collected information from that system).

Decision Aid Enhancement Features:
- If more information is contained within that solar system than can be
collected by the cruiser, the aid will use this fact when indicating a



ranked list of tools to deploy, a ranked list of planets to deploy the tools
to, and when indicating a ranked list of tools to recall.

3) cruiser's information storage capacity
Perceptual Cue Enhancements:
- Gauges indicating cruiser's storage capacity will be altered to

resemble those depicting the amount of information contained on a
planet.

Decision Aid Enhancement Features:

- If deploying a robot ship to a planet in a solar system could result in the
tool collecting more information than can be stored on the cruiser (due
to its automatically flying to other planets), this fact will be considered
when the aid indicates a ranked list of tools to be deployed, a ranked list
of tools to recall, and a list of planets to deploy tools to.

- The aid will consider the remaining capacity it has to store information
when indicating a ranked list of tools to recall from planets.

- The aid will indicate whether the user is trying to recall a tool which
would overload the star cruiser.

4) amount of information collected by {ool
Perceptual Cue Enhancements:

- "Ghost image" of collected information so user knows how much tool
will transfer to cruiser.

Decision Aid Enhancement Features:

- If deploying a robot ship to a planet in a solar system could result in the
tool collecting more information than can be stored on the cruiser (due
to its automatically flying to other planets), this fact will be considered
when the aid indicates a ranked list of tools to be deployed, a ranked list
of tools to recall, and a list of planets to deploy tools to.

- The aid will consider the amount of information collected by each tools
(in relation to the remaining capacity on board the cruiser) when
indicating a ranked list of tools to recall from planets.

- The aid will indicate whether the user is trying to recall a tool which
would overload the star cruiser.

5) types of tools deployed to each planet
Perceptual Cue Enhancements:

- Locate deployed tools around planet, one tool type in each corner.
(Ease of implementation questionable.)

Decision Aid Enhancement Features:

- When indicating a ranked list of tools to deploy and a list of planets to
deploy the tools to, the aid will consider what tools have already been
deployed to that particular planet.

- Because the tools may only be recalled in a specified order (see Star
Cruiser specifications), the aid will consider this order when
indicating a ranked list of tools to recall from a solar system.



Place Star Cruiser Into Orbit

1) location of ninth orbital
Perceptual Cue Enhancements:
- Highlight ninth orbital.

Decision Aid Enhancement Features:
- Hints could be suggested to the user in a window, such as "Deploy
probe to find ninth orbital” or "Outer planet is in the seventh orbital.”
OR
- Advice could be provided to the user indicating which direction to move
the star cruiser to obtain orbit (such as placing arrows by the star
cruiser, indicating the direction).

2) cruiser's speed
Perceptual Cue Enhancements:
- Change color of cruiser when it has obtained orbiting speed (or
slower).

Decision Aid Enhancement Features:

- Hints could be suggested to the user in a window, such as "You have
reached orbital speed.”

OR '

- Advice could be provided to the user indicating whether or not the
cruiser needs to slow down or has reached an acceptable speed (for
example, from the previous section the arrows placed by the star
cruiser could turn different colors, depending upon the current speed
of the cruiser).

Controlling Star Cruiser’s Movements and Deploy Probe

1) function of string pull upon cruiser
Perceptual Cue Enhancements:
- Change color of cruiser to indicate type of action string pull will have
on cruiser.

Decision Aid Enhancement Features: .
- The aid could indicate to the user which type of action a string pull will
have on the cruiser.

Remove Star Cruiser From Orbit

1) amount of thrust required for cruiser to break orbit
Perceptual Cue Enhancements:
- Flash cruiser when thrust to be applied to cruiser (as indicated by
string pull) is enough for it to break orbit. (Questionable as to whether
or not this is really needed.)



Decision Aid Enhancement Features:
- No decision aid enhancement features are proposed here.

Dock Star Cruiser At Star Base

1) cruiser's amount of fuel
Perceptual Cue Enhancements:
- (See Choose Star Cruiser's Destination)

Decision Aid Enhancement Features:
- (See Choose Star Cruiser's Destination)

2) amount of information stored on cruiser / cruiser's remaining storage capacity

Perceptual Cue Enhancements:
- (See Choose Star Cruiser's Destination)

Decision Aid Enhancement Features:
- (See Choose Star Cruiser’s Destination)

3) availability of information in other solar systems
Perceptual Cue Enhancements:
- (See Chooee Star Cruiser's Destination)

Decision Aid Enhancement Features:
- (See Choose Star Cruiser's Destination)

4) speed of cruiser
Perceptual Cue Enhancements:
- Change color of cruiser when it has obtained docking speed (or
slower).

Decwwn Aid Enhancement Features:
- When docking at star base, the aid can indicate whether the cruiser
has obtained docking speed or needs to slow down (through a change
in color or a message).

Changing Views

1) may only perform if cruiser has previously visited solar system or if a probe has
been deployed to it
Perceptual Cue Enhancements:
No perceptual cue enhancements proposed due to complexity of changes
that would be required.

Decision Aid Enhancement Features:
No decision aid enhancement features are proposed here.

[N



Recall Probe

No proposed enhancements since no common factors between perceptual cue and
decision aid enhancements.

Release Star Cruiser From Star Base

No enhancements required. None were deemed necessary.

Experimentation

At this point, the perceptually enhanced version of the display has been
constructed, and building the decision aiding system is in progress. An
experiment is currently being performed to compare learning and performance
using the original display with learning and perfomance using the perceptually
enhanced display. Eight subjects are being run in each display group for a total
of 16 sessions (after two one-half hour training sessions).

Initial results, shown on following pages, are encouraging. On average,
subjects in the enhanced display condition perform at a level 35% higher than the
subjects using the original display.
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SUMMARY

Computer-based graphical displays are increasingly used as aids to
human decision-makers. However, effective use of this new technology
requires an understanding of perce‘ptual components of decision skill. As a
step toward meeting this need, two sets of models of skilled human decision-
making using dynamic, graphically displayed information are presented.

The first model set uses the backpropagation artificial neural
network architecture to describe how skilled decision-makers might
become increasingly attuned to highly diagnostic features of a graphically
displayed decision task. The proposed model is consistent with recent
psychological research suggesting that decision-makers develop a "trained
eye" through experience. The model set consists of three models which use
different input feature representations.

The second model set utilizes genetic-based machine learning
techniques to also describe how decision-makers might rely on perceptual
components of decision skill. The model set includes a pure genetic
algorithm and a revised classifier system. The model sets are similar in
that both accept inputs with only dimensional information from the
graphical display. The model sets .are different mainly in the method used
to search the solution space. Whereas the neural networks operate using

gradient descent search, genetic-based techniques work by random search.
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Results comparing the performance of artificial neural networks and
genetic learning models with the performance of human subjects in a
laboratory experiment suggest that both model sets provide promising, but
different, approaches for the study of decision skill. In particular, the
results of one neural network model suggest that relational input features

are important cues used by subjects.



CHAPTER I
INTRODUCTION

Current theories of human decision-making reflect a history of
retreats from the strong assumptions made by traditional utility theory (von
Neumann and Morgenstern, 1947). In utility theory, the worth, or utility, of
one's choice is the criteria for decision-making. One who is consistent with
the theorfy would seek to maximize the expected value (i.e. the weighted
probabilities of the alternative outcomes of a choice) of one's utility.
Although utility theory may be adequate for simplistic scenarios, real-world
situations proved too complex to be modeled. A classic example is the
Prisoners' Dilemma (Davis, 1985). Two suspects, accused as partners for a
crime, are told separately by police that enough evidence exists to warrant
X years of jail sentence each. The police further offer the carrot of parole to
the suspect who implicates the other. The implicated suspect would have to
serve 4X years in prison. However, if both suspects confess, both will have
to serve 3X years in prison. The suspects are faced with two options: to deny
all charges; or to condemn the partner. The optimal choice for either
prisoner is to condemn the other. However, if each condemn the other, the
police will be able to implicate both. Therefore, the satisfactory and most

stable, though not optimal, strategy is for both to deny all charges. If utility



theory was implemented to solve the Prisoners' Dilemma, each prisoner
would always want to maximize his/her utility. Doing so, however, would
minimize the utility of both suspects.

To counter utility theory, Simon (1959) proposed, in the context of
economics, that the human decision process is oriented to satisfice (to
derive a satisfactory solution), rather than to optimize a solution.
Characteristics of satisficing behavior are described as follows:

Models of satisficing behavior are richer than models of

maximizing behavior, because they treat not only of

equilibrium but of the method of reaching it as well.

Psychological studies of the formation and change of

aspiration levels support propositions of the following kinds.

(a) When performance falls short of the level of aspiration,

search behavior (particularly search for new alternatives of

action) is induced. (b) At the same time, the level of aspiration

begins to adjust itself downward until goals reach levels that

are practically attainable. (c¢) If the two mechanisms just

listed operate too slowly to adapt aspirations to performance,

emotional behavior--apathy or aggression, for example--will

replace rational adaptive behavior. (Simon, 1959, p. 263)

In a complex environment, such as the economic world, the decision-
maker is faced with numerous opportunities for action. Thus, information
processing limitations constrain the decision-maker to adopt satisfactory
solutions. Therefore, models of human decision-making which follow the
utility theoretic approach may actually overestimate the ability of humans
to process information.

Studies of decision-making in complex tasks confirms Simon's
satisficing principle. Lesgold et al. (1988) analyzed X-ray diagnosis by
radiologists of varying expertise. They found that diagnoses by expert

radiologists were supported by highly refined automatic recognition



capabilities. Novice radiologists, who tended to use a probabilistic
approach, were significantly less accurate in their diagnoses. Chase and
Simon (1973) examined the ability of chess players of varying skills to
generate moves. They found that chess masters were able to extract
information from existing board configurations to construct "right" moves
for further consideration. Although novice chess players were able to
generate the same number of move possibilities as the chess masters, the
moves themselves were much less desirable. Thus, in both studies, skilled
human decision-making in a complex task did not conform to utility theory
prescriptions. In fact, signs of systematic searches through the entire
solution space were only evident in novice behavior.
Perceptual Mechanisms of Decision-making

In both the radiologist and the chess player studies, skilled decision-
making processes were thought to rely heavily on perceptually-oriented
mechanisms that processed displayed information. Lesgold et al. (1988)
demonstrated the perceptual processing of experts by their ability to quickly
generate a pertinent schema to aid diagnosis. Chase and Simon (1973)
noted that it is no mistake of language for a chess master to say that he
"sees” the right move. Thus, perceptual components appear to be a major
part 6f expert decision-making in a complex task. To compensate for cases
where the perceptual mechanisms cannot uniquely qualify an action,
higher cognitive processing may also be required. In light of the
importance of perceptual mechanisms in skilled decision-making, three

perceptually-oriented modeling approaches are described. The three



approaches are: recognition-primed decision-making in naturalistic
environments as proposed by Klein (1989); the research of Hammond and
his colleagues on analytical-intuitive cognition (Hammond, Hamm,
Grassia, and Pearson, 1987); and the research of Kirlik and his colleagues
on perceptual aspects of skilled decision-making in dynamic environments
(Kirlik, Miller, and Jagacinski, 1992; Kirlik, Markert, and Shively, 1991).
Recognition-primed Decisions Paradigm

A model of recognitional decision-making in natural settings has
been suggested by Klein (1989). The model, recognition-primed decisions
(RPD), was formulated through observations and interviews with
professionals ranging from fireground commanders to design engineers.
The model proposed four major features of decision-making. The first
feature involves recognizing an instance as typical. Once an instance has
been recognized, the second feature--situational assessment--is activated.
Situational assessment involves an understanding of the situation as the
decision-maker draws on prior experiences to identify courses of action.
Situational assessment concerns not only action goals, but also
expectancies to confirm or deny that the correct course has been taken. The
third feature, serial evaluation, sequentially assesses options of action until
a satisfactory one is found. This feature is most similar to the principle of
satisficing. The last feature, progressive deepening, involves mentally

pre-playing scenarios to imagine how an option will be executed. Chess



master strategies are examples of progressive deepening. Chess masters
tend to chose one move, consider a countermove, and progressively deepen
the process (Klein, 1989).

Underlying the RPD model is the assumption that the
decision-maker is skilled. Novice decision-makers tend to deliberate
concurrently, instead of serially, over available options. The drawback to
the RPD model is the lack of formalization. As of now, no successful
mathematical implementations of the RPD model have been made.

Intuitive Decision-making Paradigm

Hammond et al. (1987) described an "intuitive" mode of cognition
that, at times, out-performs an analytical cognitive mode. In the intuitive
mode of decision-making, cues in the environment used by the human are
perceptually assessed. The significance of thé assessments then
determines an appropriate situational judgment. Hammond et al.
characterized intuitive decision-making as having the following properties:
low cognitive control; rapid rate of data processing; low conscious
awareness; and normally distributed errors. Subjects using the intuitive
mode of decision-making showed high confidence in the answer and low
confidence in the method of deriving the answer.

Through experiments, Hammond et al. found that both task and
interface features could influence the type of cognition (analytical or
intuitive) used by the subject to perform a task. Thus, a continuum,
ranging from purely analytical to purely intuitive, was devised to account

for the possible strategies for performing a task.



Unlike RPD and perceptual decision-making paradigms, intuitive
decision-making involves a "natural" mode of perceptually-oriented
processing. A natural mode denotes that the processing did not depend on
training at the task.

Perceptual Decision-making Paradigm

Kirlik, Markert, and Shively (1990) suggested that the human
perceptual system serves a dual role in decision-making performance.

- First, the perceptual system functions as a mediator between the context of
a current decision process and stored knowledge. Second, the perceptual
system can directly initiate activity through the development of a "trained
eye." Kirlik (1992) characterized a perceptual model of skilled decision-
making in a dynamic task. His model was based on a hierarchically
structured set of perceptual mechanisms that defined a set of decision
options. The mechanisms also defined a distribution of values over the
options to indicate the availf:ability of each.

Kirlik, Miller, and J;gacinski (1992) conducted empirical studies to
identify the perceptual m.é” anisms used by human subjects while
interacting with a compute?‘;' simulation of an aviation micro-world.

The micro-world consistedof five friendly aircrafts, a computer-generated
terrain, enemy craft, and cargo. Friendly aircraft "crews" were chosen
from a university population. The objective was to pilot a scout aircraft
through the terrain and dispatch the other four aircrafts to engage enemy
targets or load and unload cargo. A task analysis of the human-

environment system led to the design of a process model capable of

6 ORIGINAL PAGE IS
OF POOR QUALITY



mimicking subject behavior. The process model categorized displayed
situations in terms of the degree to which various actions were appropriate.
The categorization was mainly accomplished by perceptual components.
As the micro-world was a dynamic environment, immediate perceptual
classification was necessary. The effectiveness of the process model was
shown by the similarity of actions suggested by the model's perceptual
mechanisms and those taken by the crews.

The approach of investigating the perceptual mode of decision-
making has been the most formal of the three paradigms described (RPD,
Intuitive, and Perceptual). Thus, the perceptual approach seems best
suited to be modelled through mathematical techniques.

Graphical Considerations for Experimental Design

The design of graphical display for a task to analyze perceptual
decision-making processes must be carefully considered. Barnett and
Wickens (1988) proposed the principle of compatibility of proximity to aid
display design. The principle asserts that multiple channels of information
requiring mental integration should be physically integrated as well. In
support of the principle, they shqwed that integration of information using
rectangles was significantly better than using bar graphs. Even when the
task required focussing attention on isolated attributes, subject
performance using the integrated rectangle display did not suffer. Barnett

and Wickens also noted that an important element in the principle is the



emergent feature. An emergent feature is a property of the configuration
of multiple dimensions of an object that does not exist when the dimensions
are specified independent of one another.

Sanderson, Flach, Buttigieg, and Casey (1989) also stressed the
importance of emergent features in aiding display design. The emergent
feature principle was used to predict the effectiveness of visual displays in
supporting a variety of monitoring tasks. Emergent properties of a visual
stimulus should identify invariants in the environment. An invariant is a
permanent physical property of an object or system that remains constant
across all superficial transformations unless an abnormality is present
(Sanderson et. al., 1989).

Modeling Goals and Objectives

The purpose of this research was to construct mathematical models
of the perceptual decision-making paradigm using artificial neural
network and genetic learning methodologies. To analyze human
perceptual decision-making processes, subjects’ performances on a
dynamic decision-making task were recorded. The mathematical models
were then used to simulate subject performance on the same task. By
analyzing the performance of the mathematical models, certain diagnostic
features could be inferred. In particular, relational input features were
found to significantly improve the performance of an artificial neural
network model. To further examine the neural network model, a
"skeletonization" technique was used to identify how the trained model had

become attuned to various input features.



Chapter 2 describes the dynamic graphical task used to investigate
skilled decision-making. It also illustrates a method to generate a profile of
errors, called "error signature diagnosis”, in order to identify perceptual
heuristics from behavioral data. Chapter 3 describes artificial neural
network models of subject performance in the graphical decision task. A
brief introduction to artificial neural networks is given first. Next, a neural
network model is presented in terms of the graphical decision task and
components of perceptual decision-making. A specifications section follows
to discuss implementation of the neural network in terms of the graphical
decision task and perceptual decision-making components. Chapter 4
describes a genetic algorithm and a genetic-based machine learning model
of subject performance in the graphical decision task. Traditional genetic
algorithms are first introduced and explained. Revisions of the traditional
structure to accommodate the graphical decision task are also described.

In addition, a genetic-based machine learning model is described in terms
of the graphical task and components of perceptual decision-making.
Chapter 6 discusses computer program design issues. Chapter 7 presents
the analysis of results generated by the artificial neural network, genetic
algorithm, and genetic-based machine learning models. The
skeletonization technique is also described there. Chapter 8 concludes the
thesis with a discussion of significant findings and implications for further

research.



CHAPTER II
TASK AND EXPERIMENTS
Laboratory Task
In 1980, Tulga and Sheridan constructed a scheduling task to explain
that human decision-making was based on principles of utility theory.
Kirlik, Markert, and Shively wanted to explore ramifications of applying
simpler perceptual models to the same scheduling task. The task was
modified to promote perceptual mechanisms of skilled decision-making.
The modified task will be referred as the revised Tulga task (RTT). A
description of the task is as follows:

The display [see figure 2-1] shows four horizontal lines.
At the start of each trial, four rectangles of variable height and
width appear at the left side of the screen and begin to move to
the right. Each rectangle represents a task that must be
processed before it reaches its due-date (the end of the line). In
the present version of the task, subjects processed a rectangle
by pressing a numbered key. The keys were vertically
arranged on a modified keyboard to ensure spatial
compatibility with the display. In general, the subject's task is
to determine an appropriate order in which to process the four
rectangles and to enter the order as rapidly as possible.

Only one rectangle can be processed at a time. If the
subject enters the keys 1, 2, 3, 4, in that order, rectangle 1 will
begin processing and the other rectangles will travel some
variable distance across the screen during the time in which
rectangle 1 is being processed. After the first rectangle has
completed processing, the next rectangle will begin
processing, and so on, until all the rectangles have
disappeared from the screen. The subject cannot interrupt the
ongoing processing of a rectangle, and may make keypresses
at any time after the initiation of the trial, although a -
performance penalty is incurred if the subject delays between
keypresses. As an inducement to rapidly determine an
ordering of the rectangles, any time delay incurred between

10



entering successive keys is reflected in a delay of the same
duration between the end of the first rectangle's processing
and the start of the second rectangle's processing. This
feature of the task was included specifically to promote the
development of rapid, possibly perceptual decision processes.

During intervals in which a rectangle is being
processed, or in which processing is delayed, the remaining
rectangles move across the screen at variable speeds. The
speed with which a rectangle moves has been constrained to
vary linearly with its area. Larger (area) rectangles move
proportionately slower than smaller rectangles.

The optimal ordering is a function of a number of
factors. First, the nominal value of a rectangle is indicated by
its height. In calculating the actual payoff earned by
processing a rectangle, though, the nominal value is divided by
the distance the rectangle has traveled when it has completed
processing. Therefore, a higher proportion of a rectangle's
nominal value is earned the shorter the distance it has
traveled. The overall payoff for a single trial is the sum of the
payoffs earned for the four rectangles. (Kirlik, Markert, and
Shively, 1990, p. 519)

g )
READY Score___

-
i

-

Figure 2-1. Revised Tulga-task Display
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The optimal payoff score is calculated as follows:
Given the 24 possible orderings for the four rectangles,

optimal_order_payoff = max total_payoffs(i) for i=1,..,24
where the total payoff score is the summation of partial payoff scores of
each rectangle selected at the jf.h order

total_payoffs(i) = ¥ partial_payoff(j) for j=1,..,4
and

partial_payoff(j) = H(G)2 * W() / £ W(k) for k=1,..,j (2.1
where H is the height and W is the width of RTT rectangles.
Subjects receive a score at the end of each trial, indicating the percent of
optimal performance that was achieved. The subject payoff score, which
range [0, 100], is calculated as follows:

payoff = ¥ actual_payoff(l) / maximum_payoff  for 1=1,...4.
where actual payoff is the score at each rectangle selected at lth order by the
subject, and

actual_payoffil) = H(1)2 * W(1) * C1/ (2.2
(T [C2*W(m)] + X [C3 * delay_time(m)])
for m=1,:.,l. C1, C2, and C3 are constants and delay_time(m) is the time
between subject order selections.
Experiment

Four subjects (1, 2, 3, 4) from the student population of Georgia Tech
participated in the experiment. Students received monetary compensation
for each hour of participation. The participants were encouraged to

correctly order the rectangles so as to achieve the highest possible payoff
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score. The individual with the highest average payoff score at the end of the
experiment was given a monetary bonus. The subjects were told that the
rectangle height represented the nominal payoff value. They were also told
to order the rectangles as quickly as possible.

Each experimental session consisted of a series of 80 trials. At the
beginning of each trial, a 5 sec. pause was given. Following the pause, a
READY message, as shown figure 2-1, was shown for 3 sec. The rectangles
then appeared and started moving to the right at varying speeds (according
to area). After all the rectangles were processed, the payoff score was
displayed for 2 sec. Following the payoff score display, the 5 sec. pause was
repeated and the process continued until the completion of 40 trials. At the
end of 40 trials, the subjects were instructed to take a short break, after
which the remaining 40 trials were completed. Each session typically
lasted one hour.

Two Macintosh II's were used to run the experiment. The keypad
was modified to allow rectangle ordering. As shown in figure 2-1, the "1"
key represented the top rectangle, the "2" key corresponded to the second
from the top, the "3" key meant the third from the top, and the "4" key
represented the bottom rectangle. A set of 16 rectangles were used to
generate different combinations of four rectangles to appear on the
computer screen. A graphical representation of the 16 rectangles in

In(height) X In(width) space is shown is figure 2-2.
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Figure 2-2. Rectangles Used in the Experiment

The subjects completed a total of five sessions over a five day period.
Each day's session was the same for all four subjects. Day 1 was used as a
practice session. Therefore, only data from days 2 to 5 were used for
modeling purposes. Data captured from the sessions include reaction time
(delay time between keypresses), order of rectangles, and payoff score.

Task Analysis

From the description of how optimal payoff scores were calculated, a
pair-wise rectangle ordering rule can be generated. Given two rectangles a
and b, rectangle a should be processed prior to rectangle b if (from {2.1)}):

He2 + Hp2 [ Wy / (Wa+ W) 1 2 Hp2 + Ha2 [Wa/ (Wa+Wy) |

Isolating features of each rectangle, the inequality then becomes:

Ha2/ W, 2 Hp2/ Wy (2.3}
To graphically represent the optimal pair-wise ordering rule (2.3}, make Ha

and W, dependent variables (H and W respectively) and Hy, and Wy
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independent variables. Furthermore, simplify (2.3/ to an equality to depict a
line instead of a region. Thus, the rule becomes:

H2/W = Hp2/ W,
Assuming W > 0 and Wy, > 0, take logarithms of both sides:

In(H2/W) = In( Hy2/ W)

We get:
2InH-InW = 2InHp-In Wy

Letting y=InH y1=InHy
x=InW X; =ln Wy

and substituting, we get:

(y-y1) = V2(x-x1)
which is the equation of a line in Cartesian coordinates. Thus, the pair-
wise ordering rule is represented by the slope of the line in In(height) X
In(width) space. Given a slope m, and rewriting the equation of a line to a
more familiar form,‘we get:

y=mx+b where b=-mxpy+
In figure 2-2, the line through rectangle 7 shows its ordinal position among
all the rectangles on the grid. Thus, each rectangle satisfying:

y>12x+b
will be pair-wise ordered prior to rectangle 7. Similarly, each rectangle
satisfying:

y<12x+b

will be pair-wise ordered aftsr rectangle 7.



Kirlik, Markert, and Shively (1990) devised a method of calculating
"error signatures” to identify possible perceptual heuristics that could be
used to pair-wise order the rectangles. The error signature uses the line
representing the optimal heuristic 2.3/ to compare with lines generated by
other rules. To calculate the error signature, bound the deviations of the
non-optimal rule from the optimal rule. Consider m as the slope of the
heuristic to be compared, one set of constraints is as follows:

y>12x+b y>mx + ¢ where b and c are constants.

The second set of constraints is similar:
y<1/2x+b y<mx+¢

The intersection created by the two sets of constraints represents the error
region. For instance, given the rule:
H/W>H, /W, (2.4

which has a slope of one, the intersection created by the optimal rule and
the non-optimal rule contains rectangle 15. Thus, if a subject consistently
mis-orders the pair of rectangles 15 and 7, the error signature profile can
show that he/she is using rule (2.4/. Therefore, the error profile can show if

subject behavior was consistent with a particular rule.
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CHAPTER III

ARTIFICIAL NEURAL NETWORK MODEL OF
PERCEPTUAL DECISION-MAKING

Introduction to Artificial Neural Networks

To better understand components of decision skill, a model of human
decision-making using dynamic, graphically displayed information was
constructed. Using the RTT as the graphical task, the model sought to
simulate performance as indicated by the data of the four human subjects.
The model utilized the artificial neural network (ANN) paradigm. ANNs
are biologically-inspired systems that process information via dense
interconnections of simple computational units. ANNs will be introduced
in the present section with respect to the decision-making paradigm. A
more technical explanation will be included later. ANNs consist of two
primary elements: computational units (or nodes) and interconnections (or
weights). Figure 3-1 shows an ANN with two layers of weights and three
layers of nodes. The hodes receive input signals from other nodes via the
weights. Based on the strength of incoming signals, the receiving node, in
turn, generate an output signal. The strength of the output signal is
determined by an activation function residing on the receiving node. Given
a target criterion, an ANN can learn by using training rules to change

weights.
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Output Layer Nodes

Output Layer Weights

Hidden Layer Nodes

Hidden Layer Weights

Input Layer Nodes

Figure 3-1. Artificial Neural Network Architecture

Artificial Neural Network Characteristics

Parallel-processing ANNs have several benefits over traditional von
Neumann sequential computers (Lippmann, 1987). Due to massive
interconnections among processing nodes, ANNs typically provide a
greater degree of robustness or fault tolerance. In addition, most ANN
have the ability to adapt and learn over time. Moreover, ANNs make
weaker assumptions regarding the solution space. ANNs "Don't 'execute
programs' as much as they 'behave’ given a specific ihput ... They 'react,’
'self-organize’, 'learn,’ and 'forget™ (Caudill, 1987, p. 48). Thus, ANNs
make promising models of human performance for certain types of tasks.

There are basically four types of ANN's (Fausett, 1992): an
associative memory, which is trained to associate a set of input vectors with

a corresponding set of output vectors; a pattern classifier, which classifies
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an input vector as belonging or not belonging to a category; a self-organizer,
which groups similar input vectors without external supervision; and a
constrained optimizer, which solves constrained optimization problems.
Neural Network Models of Cognition

Three issues must be addressed in order to construct a neural
network model of human cognitive processes. The first issue concerns the
structure of the network. Rumelhart, Hinton, and McClelland (1986)
described three types of structure: bottom-up, top-down, and interactive.
The fundamental characteristic of the bottom-up structure is that lower
level elements can only communicate with upper level ones. In the top-
down structure, on the other hand, only upper level elements can
communicate with lower level ones. With interactive structure, two-way
communication is possible between levels. The second issue pertains to the
function of neural network system components. Rumelhart, Smolensky,
McClelland, and Hinton (1988) described a neural network which
simulated a person's mental model of a situation as having two sub-
networks with two distinct functions. One sub-network interprets the
inputs from the environment, while the other sub-network produces
expected outcomes based on the interpretations. The third issue focuses on
the types of input representation used by the network. Humans have three
essential abilities that allow them to come to logical conclusions without
being logical (Rumelhart, Smolensky, McClelland, and Hinton, 1986, p. 44):
they are good at pattern matching; they are good modelers of the world; and

they are good at manipulating the environment around them. Therefore, to
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effectively simulate the task environment, the network designer must
realize that artifacts--man-made physical representations created to
simplify problem solving--exist, and are used extensively as perceptual
inputs to the human cognitive system.

A brief survey of three existing psychological neural network models
is presented. The first model simulates human skill acquisition by using
several connected ANNs. The second is a configural network model of
human classification and recognition learning using a one-layer ANN.
The third is a decision-making model utilizing three connected ANNSs.

The first model, proposed by Schneider and Detweiler (1988), was able
to simulate skill acquisition in a word recognition task. The model consists
of three levels--microlevel, macrolevel, and system-level. The microlevel
represents a network of neuron-like units that process input information
from the environment. The inputs to the microlevel are represented as
binary strings, where 1 or 0 denote the presence or absence of a feature.
Microlevel units are organized into functional modules. Modules
categorize sensory (i.e. auditory, visual, motor) and language (i.e.
semantic, speech, context) information available to the network, and can be
effected by the network. The macrolevel, then, represents interactions
among the modules. Macrolevel modules are further organized into
regions of sensory-language interaction. Finally, the interactions are
interpreted at a system-level. At the system-level, a central control
structure receives reports from all regions and regulates the transmission

of instructions back to the modules.



Schneider and Detweiler were able to simulate phases of human skill
acquisition through thé model. Model behavior in the initial trials
resembled controlled processing where performance was slow and
effortful. After a period of training, the model was able to perform using
"automatic" processing (i.e. direct associative retrieval of output patterns
from input patterns).

The second model, proposed by Gluck, Bower, and Hee (1989), was
able to account for learning results from several animal and human
learning literatures. The model consists of a one-layer pattern classifier
ANN with "configural" input features. A configural model encodes pair-
wise conjunctions of stimulus features as unique elements. Non-linearly
separable problems can be overcome by explicitly coding "higher-order”
elements through conjunctions of elementary features. The inputs are
coded in binary where 1 or 0 denotes the presence or absence of a configural
feature.

Gluck et al. tested the configural model on three tasks. The first task
involved solving non-linearly-separable classifications. The second task
entailed judging test patterns as "old” training instances or new instances
not experienced before. The third task consisted of classifying "noisy” data
(i.e. previously trained instances with characteristics added or missing)
into categories. In all tasks, the performance of the configural model was

found to be similar to that of the human subject. Gluck et al. attributed the
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success of the configural model to an implicit exponential decay
relationship between input cues. The same relationship exists between
stimulus similarity and psychological distance.

The third model, proposed by Leven and Elsberry (1990), attempted to
simulate human skill-acquisition and problem solving using a system of
ANNs. The model asserted that humans learn and analyze through three
hierarchical methods. First, humans perform in a calculative, rational
manner through the use of context-free rules. The first method represents
the least skilled phase of human learning, and is modeled as an associative
memory ANN. Second, humans use a structured, analytic mode of
learning via Bayesian-processing. The second method depicts a training
phase, and is represented as a pattern classifier ANN. Third, humans
process context-sensitive information through "intuitive" guidance. The
third method reflects a skilled phase, and is represented as a self-
organizing ANN.

Performance of Leven and Elsberry's model resembled
characteristics of Simon's satisficing principle. As performance of the
ANN models fell below a level of aspiration, rules were reconstructed in the
data base to change search behavior. However, if the performance
indicated that the goal cannot be attained, model behavior became radical
and unpredictable.

Psychological neural network models mentioned in this section have
been successful in simulating performance for their respective tasks. For

the RTT, however, the same models would need to be drastically altered to
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simulate human performance. Thus, a different strategy was needed to
model human decision-making in the RTT. The strategy chosen was the
perceptual decision-making paradigm. As perceptual decision-making
relies on a pattern recognitional component, a pattern classifier ANN was
selected as the model for the RTT.

Constraints on Artificial Neural Network Model of Decision-making

Kirlik and Rothrock (1991) suggested several constraints for the
ANN model of the RTT. First, input features must be determined by close
examination of perceptually available displayed information. In the RTT,
the physical dimensions of the rectangles are assumed to be the most
pertinent perceptual information. Second, artifactual input features
(dimensions not intentionally designed to communicate meaningful
information) must be considered. Shape and area, for instance, should not
be neglected. Third, input feature salience, as opposed to diagnosticity,
should not be neglected. For the ANN model of the RTT, feature salience is
assumed to also be the feature diagnosticity. Last, the attended feature set,
which may be a small subset of all information available in the
environment, should be extracted. Although some input features can be
ignored by the ANN, additional features cannot be added. Therefore, the
selection process must be thorough.
Backpropagation Algorithm
The pattern classifier ANN chosen to model the RTT used the

backpropagation algorithm gnd a three-layer architecture. The
Generalized Delta Rule (Rumelhart, Hinton, and Williams, 1986), or
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backpropagation algorithm, contains two phases: feedforward of input
signals and backpropagation of errors. Given the same architecture
shown in figure 3-1, the feedforward phase consists of the following: each
input layer node sends its input signal, multiplied by connecting hidden
layer weights, forward to hidden layer nodes; each hidden layer node then
sum all inputs and applies its activation function to determine its output
signal; the output signals, multiplied by connecting output layer weights,
becomes input signals to output layer nodes; finally, each output layer node
sums all inputs and applies its activation function to determine the outputs
of the network. The backpropagation phase consists of the following: the
outputs of the network from the feedforward phase are compared with a set
of target nodes; the errors (target-output) are propagated back through the
network via the learning rule; finally, the hidden and output layer weights
are updated based on the propagated errors.
Backpropagation Model of Decision-Making in RTT Context

In terms of the RTT, the input signals to the backpropagation
network were representations of the rectangles. The outputs of the network
represented an ordering of the rectangles. To factor out motor skill effects,
the reaction times of the network were made to match subject reaction
times for the same session. In addition, the network was trained on the
same trials as the subjects.

The backpropagation algorithm contains some strengths which
make it useful for modeling perceptual decision making. First, cue

attunement can be thought of as network learning. As the network learns
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information through its weights certain input nodes become more
diagnostic than others. Second, once high diagnosticity is achieved, i.e. the
network is trained, the feedforward component alone can be used to
simulate a mode of decision-making where perception directly specifies
action.

There are weaknesses to the modeling paradigm as well. First, an
underlying assumption of the backpropagation algorithm is that all
relevant input features can be identified by the modeler. Thus, the network
cannot add supplementary cues from outside the current representation.
Second, the backpropagation network tends to require thousands of training
epochs (cycles of input signals). The subject, however, was trained only
once on the same set of input signals. Third, the target representation of
optimal orders is not available in the RTT. The only feedback received by
the subject was the payoff score. Fourth, training rules (search techniques)
used by the backpropagation algorithm, such as gradient descent,
sometimes cannot overcome local minima problems. Whereas the human
subject could select a different diagnostic cue from the display, the ANN is
trapped ir_l a fixed search scheme.

Artificial Neural Network Specifications

The present section describes the implementation of the
backpropagation algorithm in the context of the RTT. A primary modeling
objective was consistency and generality. Three different network
representations were considered. To objectively evaluate each network's

ability to learn and adapt, the following set of criteria was used: the initial

pi3]



weights, created by a pseudo-random number generator, were the same for
all three ANNSs; the number of hidden layer nodes was n/2 where n was the
number of input layer nodes; the learning rule was the Least Mean Square
(LMS) rule; the activation function was the logistic sigmoid function for
inputs ranging from -1 to 1; values for input and output layer nodes were
bound between 0 and 1; and the threshold for the error term was set at
0.165.

To facilitate robust learning, weights were created to range from -1
to 1. The number of hidden layer nodes was arbitrarily chosen. Caudill
(1988) noted that too many hidden nodes will encourage the network to
memorize patterns, while too few will drastically extend the number of
training iterations. The LMS rule essentially reduces the difference (error)
between the target output and the actual output generated by the network

through gradient descent. The error of each pattern E is:
1 k 2
E = 2 mZ-O ( dm. ym)

where k is the number of output layer nodes, dp, is the target node, and yy,

is the output layer node. Fausett (1992) suggested using the bipolar form of
the logistic sigmoid function f(x), and the corresponding derivative f'(x) for

binary input data where:

= —= 1
1+ exp(-x) and (X)) =05[1-F2(x)]

Figure 3-2 shows a simplified version of the feedforward phase of the
backpropagation algorithm for the RTT. For the actual RTT model, the
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number of input and hidden layer nodes was determined by the input
representation, and the number of output nodes remained four. The input
layer nodes (0 and 1) fed forward signals from outside the network. The
signals were multiplied by weights and summed as Sg 3 at the hidden layer
nodes (2 and 3). The activation function, which was the same for all nodes,

then calculated the output of the hidden layer nodes yz,3. These outputs,
multiplied by weights, were then summed as S4 5 at the output layer nodes

(4 and 5). Finally, the activation function at the output layer nodes

calculates the output (i.e. ordering of the rectangles) of the network y4s.

y y
y,=f(8,) ! ® y = f(8,)
3 3
S4 - mz.gw«hn ym w42 W43 W52 W53 ss - m,2W5m ym
Y, Y,
: : y.=£.(8.)
y.=f(8S,) ~ 3= 93" 9
2~ Y2 V2 W, W, W, W,
1
: S=IW vy
= y y ms= dm"m
82 nEonYm 0 1 3 med
0 1

Figure 3-2. Feedforward Phase of Backpropagation Algorithm

Figure 3-3 shows a simplified version of the backward propagation
phase of the backpropagation algorithm for the RTT. p represents the

learning rate, which decreases with time. Correction terms (d4,5) on the
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output layer nodes were calculated based on the error of the target (d4,5) and
output (y4,5) nodes. The terms were then propagated back the network so
that hidden layer correction terms (d2,3) could be calculated. Finally, the

weight corrections (AW) were used to update weights for the current input

signals. The new weights were calculated as:

(new) (old)
Wﬁ = Wﬁ +AWij
d, d,
a4=(d4'y4)f4’(s4) l l as=(d5-y5)f5’(Ss)
AW, = 13,Y, AW, = [Ld.Y,

AWQ=P.34Y3 AW53=!.185Y3

5 5
82=f2'( S2)E’-¢Wmﬂam 33=f3'( Sa)mz=4wm38m

AW, _=H1d Y
AWmsuazyo n = H 370

AW, =U1dVY, AW, = 1a,y,

Figure 3-3. Backward Propagation Phase of Backpropagation Algorithm
" Input Representations
Three input representations for the RTT are shown in figure 3-4. The

dimensional representation contained scaled (from 0 to 1) real number

values of the height (H), width (W), area (H * W), shape (H + W), and the
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optimal heuristic (H2 + W) (Kirlik, Markert, and Shively, 1990) of each
rectangle. In terms of the signature error discussed in Chapter II, each
dimension (which can also be considered a heuristic for the subject) can be
represented as a line in In(height) X In(width) space. The slope of the
height line is 0, the width line is undefined, the area line is -1, the shape
line is 1, and the optimal heuristic is 1/2. There were 20 input layer nodes
for the dimensional representation. The same dimensions were considered
in the relational representation. However, the value of the relational nodes
were binary, where 1 represented that the rectangle had the greatest
dimensional value of all the rectangles in the present input set. There were
20 input layer nodes for the relational representation. The third
representation applied the strategy of the relational representation to all
possible pairs of rectangles. Thus, the rectangles with the greater
dimensional value in each pair were assigned a 1. There were 30 input
layer nodes for the pair-wise relational representation. This representation
was similar to the configural representation used by Gluck, Bower and

Hee.



Dimensional ANN Input Representation (Real-valued)

OOOOO

H*W H+W HM?+W
| ] | ] | ] | ]

Rectangle 1 Rectangle 2 Rectangle 3 Rectangle 4

Relational ANN Input Representation (Binary)

OO0 OO O

Max(H) Max(W) Max(H * W) Max(H + W) Max(H*2 + W)
l IL ] | ] 1 ]

Rectangle 1
nee Rectangle 2 Rectangle 3 Rectangle 4

Pair-wise Relational ANN Input Representation (Binary)
(if top rectangle is less than lower rectangle, the node is turned on)

000000

Recl Recl Recl Rec2 Rec2 Rec3

vs vs vs vs vs v8 o0 too s XN

Rec2 Rec3 Recd Rec3 Recd Recd
| J 1 ] 1 ] 1 ] L |
H W H*'W  H+W  HAM+W

Figure 3-4. Artificial Neural Network Input Representations



RTT Modifications to the Backpropagation Algorithm

Figure 3-5 shows the flow of the backpropagation model of the RTT.
Some modifications were made to the feedforward of data and back
propagation of error phases. From the input layer nodes to the output layer
nodes, conventional feedforward processing took place. The output layer
nodes, which were real-valued, represented strength. To convert the
strength to a rectangle order, the output layer nodes were first assigned
rectangle identifiers. The first output node, for instance, would be assigned
the top rectangle (in relation to other rectangles as it appears on the screen)
in the RTT. The second output node would be assigned the second rectangle
from the top, and so on. Thus, if the strength of the third output layer node
was the strongest, the third rectangle from the top would be selected first in
the order.

Once the rectangle order was established, the RTT payoff score was
calculated. The computation of the payoff score also yielded the optimal
order for the present rectangle set. Using the optimal order, or subject
order if training on subject data is desired, the values of the target nodes
were set by reversing the procedure of converting strength to order.
Converting the cardinal order to a strength value, the first was assigned a
1.000000 value, the second was assigned a 0.666666, the third was assigned
a 0.333333, and the fourtil was assigned a 0.000000. The target values were
set to provide maximum separation within the bounds of [0,1]. '

Once the target node values were set, conventional back propagation

of errors occurred and the weights were adjusted. After the weights were
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updated, the next input signal pattern repeated the process. Training for
the backpropagation model continued until either a predetermined number
of epochs (1 epoch represents a cycle of all input signal patterns) had been
reached, or learning was complete.

Learning was deemed complete if a certain threshold criteria was
reached. The error (i.e. target-output) was compared to a fixed threshold of
0.165. If a significant amount of error surpassed the threshold, learning
was not complete. Thus, the range of allowable value for nodes
corresponding to rectangle strength was as follows:

O.QOOOOO -> 0.165000 for the rectangle ordered last

0.168333 -> 0.498333 for the rectangle ordered third

0.501666 -> 0.831666 for the rectangle ordered second

0.835000 -> 1.000000 for the rectangle ordered first
The threshold criteria was designed to constrain outputs to numerical
boundaries. If the error was within the allowable range, the ordering

would be optimal.
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Summary

This chapter attempted a comprehensive treatment of ANN-inspired
human decision-making models. An brief introduction to ANNs was first
given to acquaint the reader with the paradigm. A literature search of
existing ANN models of cognition revealed the need for a perceptually-
oriented decision-making model. Under constraints of the perceptual
decision-making methodology, a rationale supporting a backpropagation
model of the RTT was developed. Finally, details describing the various

adaptations of the backpropagation model to the RTT were discussed.



CHAPTER IV
GENETIC MODELS OF SKILLED DECISION-MAKING

Introduction to Genetic Algorithms

Genetic algorithms (GAs) are search algorithms based on the theory
of biological evolution énd principles of natural genetics. In computational
terms, Grefenstette (1990) suggested that GAs are distinguished from other
search techniques by the following features: A population of structures that
can be interpreted as candidate solutions to the given problem; the
competitive selection of structures for reproduction, based on each
structure's fitness as a solution to the given problem; and idealized genetic
operators that recombine the selected structures to create new structures
for further testing. The power of GAs lies in the ability to adapt to
combinatorially explosive search spaces about which little can be known a
priori (De Jong, 1990).

GAs have several benefits over traditional optimization and search
techniques (Goldberg, 1989). GAs make no assumptions regarding the
problem space. The "blind" search is solely driven by use of objective
function information. Also, instead of searching a single point in the
solution space, GAs search in parallel from a population of points. In
addition, GAs work with the coding of a parameter set, not the parameters

themselves.



GA models are able to overcome some drawbacks of ANN models.
First, GA models are able to code a parameter set of input features to create
different combinations, whereas the ANN model's input features are fixed.
Second, the ANN model's local minima problem is not encountered by GA
models because of probabilistic search. The final difference concerns the
RTT in particular. The GA model's objective function is a scalar measure
of the fitness of a GA structure; similar to the payoff score function in the
RTT. The criterion for the backpropagation algorithm, however, is a vector
measure of correctness in the ordering of rectangles.

Genetic Algorithm Characteristics

The unit of analysis in a GA model is the gene. Just as human genes
carry bits of biological data, GA genes carry bits of data about an object of
analysis. The object could be anything from a solution for an undefined
function to a component for a computer program. For humans, the genes
combine so that bits of data become a stream of information known as the
chromosome. The GA analogy to the chromosome is the string. A
collection of chromosomes, or strings, is known as a population. In most
*GA models, the number of strings within a population remains constant.

A GA model can operate on genetic strings using three operators:
reproduction, crossover, and mutation. A sample model is shown in figure

4-1. Gj; represent the jth genetic data contained in the ith string. The

initial string population is homogeneous because no interaction between
strings has taken place. The first GA operator, reproduction, can replicate

an existing string based on the string's fitness. A string is deemed "fit" if it
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evaluates to a high objective function value. In the sample model, the
second string was reproduced. The second GA operator, crossover, can
exchange information between strings. Crossover randomly selects a site
at which two strings are "spliced." Shown as phase II in the sample
model, the first and second strings were spliced between genes 4 and 5.
Through splicing, the variation within the population increases. The third
GA operator, mutation, randomly changes genetic data in a string.
Sometimes, reproduction and crossover may indiscriminantly destroy
useful genetic material. Therefore, the mutation operator is needed to
protect against irrecoverable loss by bringing new information into the

population. Mutation is shown as phase III in the sample model. Ggsin

the third string was randomly replaced with M. The new population

represents the next generation of string.
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Figure 4-1. Sample Generation of Genetic Algorithm Model

3



Genetic Algorithm Specifications
An example using Goldberg's algorithms (1989) is shown in figure 4-2 to
illustrate the details of how a GA model operates. Strings in the current
generation are maintained in a population database. De Jong (1990)
illustrated that binary-valued genes promote effective search processes in a
GA model. Thus, the strings are represented as 1's and 0's. Furthermore,
Grefenstette (1990) suggested a population size of between 50 to 100 strings to
insure satisfactory performance. Therefore, for the sake of consistency, all
genetic models developed for the RTT had a population size of 50. For the
sake of simplicity, the example has a population of only four strings.

The GA model first evaluates the strings to fitness values. Figure 4-3
illustrates how the fitness value is calculated. A string, say X, is first
decomposed to components. The components are then collectively evaluated
by an objective function, f. The output of the function is the fitness value of
string X. A probability count, based on the fitness value, is then calculated

for each string.
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Genetic Algorithm Operator

String X —p> —7p fitness value

i v

Figure 4-3. Fitness Value Evaluation Process

The probability count is then mapped onto a "roulette wheel" (figure 4-4).

String #4

String #3

String #2
String #1

Figure 4-4. Roulette Wheel Based on Example

For N strings in the population, the roulette wheel is spun N times. The
number of times a particular string is chosen by the wheel, denoted as the
random count, indicates the number of copies of itself that will éxist in the
next generation. The entire processvfrom calculating fitness values to
generating random counts is known as reproduction.

Following reproduction, the crossover operator is applied to the

strings. Two conditions must be satisfied in order to perform crossover.
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First, pairs of mates must be chosen randomly from the population.
Second, a crossover site must be randomly selected for the mating pair.
Once the sites are selected (shown in figure 4-2 as between genes 5 and 6 for
the first pair and between genes 1 and 2 for the second pair), all the gene
values of the string pairs after the crossover site are switched.

Following crossover, the strings are then manipulated by the
mutation operator. The mutation operator randomly (with small
probability) alters the value of a gene; In the example, string 2 has been
chosen to be mutated at genes 6 and 7. De Jong (1990) suggested that the
mutation probability should be less than 0.001. The resultant population,
after undergoing reproduction, crossover, and mutation, represents the
next generation of strings.

GA Models of Cognition

Goldberg (1989) offered a review of GA models in the social sciences.
However, the models reviewed were normative in nature. A normative
model prescribes what an individual should do as opposed to what he/she
actually does. The papers reviewed included a model of prehistoric hunter-
gatherer behavior (Reynolds, 1979) and a model to solve an iterated
prisoner's dilemma problem (Axelrod, 1985). Grefenstette (1990) also
provided a brief review of GA applications. The topics he described were:
numerical function optimization; optimization of computer simulated
processes; combinatorial optimization; image processing; game playing;
and multiobjective pattern classification. In light of the literature

reviewed, the trend of most GA-related research appears to be oriented
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towards optimization. Nevertheless, functional aspects of a GA model--
such as avoidance of local minima, and new rule generation--can be
applied to simulate satisficing behavior as well.
GA Model of Perceptual Decision-making

To overcome the search restrictions (trap of local minima) and
representation limitations (inability to create new features) of the ANN
model of the RTT, a GA model was constructed. Although slight variations
of the genetic operators were needed to create a model for the RTT, the
general function of the model remained the same as the one illustrated in
figure 4-2. The first modification involved the representation of the strings,
which were interpreted as rules. Each string represented the operation:

Ha operator Wb
where H was the height of the rectangle, W was the width of the rectangle,
a and b were the exponents on the height and width, and operator was one
of the arithmetic operators (+,-,x,+). In terms of the objective function
evaluation process shown in figure 4-3, a, b, and operator were all string
components. The interpretations of the rules, i.e. f{ a b operator ), dictated
an ordering of the four displayed rectangles in the RTT. The string itself
was represented as:

aa bb operator
Thus, for example,

10 01 111
represented the operation

H2 + W1



where H3 + W1 is the criterion determined by the string 10 01 111 to order
input rectangles. Note that a, b, and operator were all represented in
binary. Although some representations of the strings were not
perceptually available, such as H2 + W or 1+ W2, others, such as shape
(H + W)orarea(H x W) were.

A second modification involved the methods of crossover and
mutation. Figure 4-2 showed crossover occurring for all genes following
the crossover site. Sanderson et al. (1989) showed that humans are attuned
to invariants within a perceptual environment. Therefore, to effectively .
simulate human performance, the GA model should also seek and
maintain invariant cues. In Goldberg's algorithm, all genetic information
after the crossover site were exchanged between mates, and all information
after the mutation site was altered. To do so with the GA model of the RTT,
however, would risk breaking the integrity of a, b, and operator
components. For example, if the crossover site between two mates was
selected to be between genes 1 and 2, only half of the a component
information would be exchanged. Thus, possible invariant cues, such as a,
b, and operator components, would be lost due to random site selection. To
maintain component integrity, crossover and mutation sites were
preselected. These sites were between aa and bb genes, and between bb and
operator genes.

Introduction to Genetic-based Machine Learning Methodology

A major drawback of the GA model is its instability. Given that the

number of strings in a population remains constant, each generation
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contains a different set of strings. For the RTT, each rectangle pattern
represented a new generation. Thus, if a string scored poorly on one
displayed rectangle set, but was the best performer overall, it could have
been eliminated from the population because of the poor score. To prevent
such occurrences, an alternative model was considered. That model,
called the genetic-based machine learning (GBML) model (Goldberg, 1989),
is a rule-base system using genetic algorithm search techniques.

A GBML follows the form:

if <condition> then <action>

Incoming messages from the environment are detected by "classifier”
strings. 7These strings, using the same representation as GA strings,
classify inputs by competition with one another. Classification is
accomplished, i.e. <condition> is met, when a string has won possession of
the input message. The <action> part of the rule-base is determined by the
winning string. As in the GA example, the GBML model also contains a
string population. Each string contains a strength value. The strength of a
string, unlike the fitness value, is an internal evaluation of its worth.
Unlike the GA model, where a poor fitness value could eliminate a string
from the population, the GBML model has a "second line of defense.”" The
internal evaluation keeps a running count of the performance of a string
through a number of generations. After a predetermined number of
generations, the weaker strings are replaced with stronger ones.
Therefore, a gradual replacement based on strength of the string

population occurs.



A GBML model consists of two major components: the
apportionment of credit (AOC) system, and GA. The AOC system uses a
bucket brigade algorithm (BBA) (Goldberg, 1989). The BBA contains two
main components: an auction and a clearinghouse. The BBA can be
viewed as an economic system where information is traded from the
manufacturer (inputs from the environment) to consumers (the strings).
In the auction, strings which qualify (those that match bidding
preconditions) bid a portion of their strength for a message. The winning
string, the one with the highest bid, then pays its bid to the previous owner
of the message, and becomes the new owner. The bidding continues until
no remaihing strings are qualified to bid. At this point, the string which
holds the message is evaluated by the clearinghouse. Based on the quality
of the message, the string is either rewarded or punished by increasing or
decreasing its strength. Each auction-clearinghouse cycle represents a
generation.

The GBML model executes the GA component after a predetermined
number of generations of the BBA component. Thus, unless the GA
component is executed after every generation of the BBA, the GBML model
should be more stable than the GA model.

, GBML Models of Cognition

A survey of existing GBML models shows that although some model
characteristics show similarity to human cognitive processes, the models
are normative in nature. Spiessens (1990) described a GBML model which

L

was able to predict objective function information based on an internal
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world model. The model was used to solve a state space search problem.
The description of the model is similar to some psychological descriptions of
mental models (Richards, 1990). Riolo (1989) described the emergence of
default hierarchies in some GBML models. The models were classifier
systems used to solve a categorization task. The hierarchies seems similar
to hierarchical phases of skill, ranging from controlled behavior to
automatic behavior (Schneider and Detweiler, 1988). In spite of the
similarities, the trend of GBML research, as in GA research, tends toward
optimization. Nevertheless, characteristics of the GBML model behavior--
such as population stability and sub-optimal, but satisficing, performance--
can be aﬁplied to model human decision-making performance.
GBML Model of Perceptual Decision-making

Although slight modifications to the BBA were needed in order to
construct a GBML model of perceptual decision-making, the basic concept
of the BBA remains the same. In the BBA, each input message from the
environment is important to a particular set of strings (those which are
qualified to bid). The input representation for the rectangles of the RTT,
however, does not reveal preferences for rule strings in the population.
Therefore, to compensate for the discrepancy, four adaptations were made
in the GBML model:
1. The input message was regarded as a dummy token representing

dimensions of each displayed rectangle set. Unlike the BBA, the

message in the GBML model for the RTT had no meaning to specific

strings.
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2. Each message was traded only once, and all strings were qualified to
bid on all messages. |
3. The winning string of each auction paid its bid to the clearinghouse.

Once the string was evaluated to a RTT payoff score the

clearinghquse rewarded or punished the string based on the a payoff

score threshold.

4. The GA component was executed after all displayed rectangle
patterns were presented to the BBA component.

An overview of the model is provided in figure 4-5.

A hypothetical example iteration of the AOC portion of the GBML
model for the RTT is shown in figure 4-6. The inputs into the system,
regarded as tokens, are auctioned to the highest bidding rule (rule 3). Once
the rule wins, it pays the bid from its strength. The rule is then allowed to
be evaluated to a payoff score of, say 70.0. Since the score is lower than the
threshold, the rule is punished for poor performance by subtracting the
amount of bid from its strength. At the end of the iteration, the strength of
rule 3 decreases to 64.0.

The modified BBA (MBBA) is repeated for each RTT rectangle
pattern. Following the MBBA, genetic operations are applied to the strings.
The strength value of the strings now becomes the fitness value for the GA.
At this point, the fitness value represents an aggregate measure of the
worth of each string over all displayed rectangle patterns. The GA model
for the GBML is the same as the one used solely for the RTT.
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Comparison of GA and GBML Methodologies

Schuurmans, Chai, and Shu (1987) observed that a classifier system,
such as GBML, appears to "lack the killer instinct.” That, although the
system often reaches near-optimal solutions, global maxima are
infrequently reached. In the case of human decision-making, however,
flexibility and "non-optimal” methods might actually make better models.
De Jong stated:

The current popular view is that the classifier approach will

prove to be most useful in on-line, real-time environments in

which radical changes in behavior cannot be tolerated;

whereas the [GA] approach will be useful with off-line

environments in which more leisurely exploration and more

radical behavioral changes are acceptable.

(De Jong, 1990, p. 628)
By modeling perceptual decision-making using both the pure GA and the
GBML methodologies, perhaps some inferences concerning human
decision-making could be made. Maybe the radical behavior of the pure GA

model is indicative of human performance. Or, perhaps the conservative

approach of the GBML‘-;model is more akin to human performance.

- L
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CHAPTER V
COMPUTER IMPLEMENTATION

Computer Program Design

Before the mathematical models could be coded into computer
programs, an overview of the flow of information in the perceptual decision-
making paradigm was needed. Once an overview was provided, the
specifications of the backpropagation algorithm (discussed in Chapter III),
the GA (discussed in Chapter IV), and the GBML (also discussed in
Chapter IV) models could be programmed so that a correspondence
between the models and the decision-making paradigm became apparent.
Figure 5-1 shows an information flow diagram for the perceptual
paradigm. The diagram contains two types of processes: purely perceptual
(initial stages of processing linked by a solid line) and training (stages of
processing following the dotted line). Purely perceptual processing occurs
when perception of cues in an environment directly evokes an action.
When purely perceptual processing is not possible, training will be required
to search for more diagnostic cues. Training involves determining the
significance of feedback, and based on that significance, adjusting the

amount of attention given to different environmental cues.
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Perceptually Attune to Generate Rectangle
Diagnostic Cues from | ————P> Order Based on

Environment Diagnosis
[}
:
Strengthen or
Weaken Cue Determine Significance of
Attunement or | Results based on Feedback
Select New Cue (Payoff Score)

Figure 5-1. Information Flow in the
Perceptual Decision-making Paradigm

A computer implementation of the perceptual paradigm using an
ANN model is shown as an information flow diagram in figure 5-2. The
forward data path of the ANN model represents purely perceptual
processing. Input representations and fixed subject reaction times are first
processed by the input layer and passed forward to hidden and output
layers via the weights. The strengths of the output layer nodes are then
converted to an ordering of displayed rectangles. A payoff score is then
calculated using the ordering. The feedback data path of the ANN model
represents training. The ordering of displayed rectangles is compared to a
target order. Errors from the comparison are propagated back through the

ANN model and are used to update existing weights.
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Figure 5-2. ANN Model of the
Perceptual Decision-making Paradigm

A program of the perceptual paradigm using a GA model is depicted
as an information flow diagram in figure 5-3. As in the ANN program, the
forward data path represents purely perceptual processing. Input
representations and fixed subject reaction times are first detected and
stored into a GA database. Each string in the database is then translated in
a rule, and the rule is activated to generate an ordering of displayed
rectangles. A payoff score is then calculated using the ordering. Unlike
the ANN program, which calculates one payoff score per displayed
rectangle pattern, the GA program calculates 50 payoff scores (one for each

of the 50 rules in the population). The feedback data path of the GA
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represents training in the perceptual paradigm. Rule strings registering
higher payoff scores are reproduced to replace weaker strings. Strings are
then coupled into 25 pairs by the crossover component. After the exchange
of information occurs within string pairs, strings are selected, at random,

to be mutated.

Calculate

Rectangle String in —p Payoff

Detect Displayed Activate Rule
—>
Information Score

Population

Execute Execute Execute
Mutation <+ Crossover <4+ Reproduction

Component Component Component

Figure 5-3. GA Model of the
Perceptual Decision-making Paradigm

A computer implementation of the perceptual paradigm using a
GBML model is shown as an information flow diagram in figure 5-4. The
GBML model uses the same forward data path as the GA model. Unlike
training for the perceptual paradigm, where each displayed rectangle
pattern is sequentially trained, training for the GBML model resemble a
"batch” mode of processing. The processes shown within the shaded region
in figure 5-4 represent the apportionment of credit (AOC) system. All

displayed rectangle patterns are first processed by the AOC. Asrule
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strings bid for the displayed rectangles, an internal value system tracks the
worth of the strings based on the goodness of payoff scores. However, no
training (modifications to the rule strings) occurs in the AOC system. The
reproduction, crossover, and mutation components, as described in the GA
model, actually modify the rule strings. Thus, since the GA components
are not executed until after AOC processes, the rule strings are essentially
modified in terms of feedback from processing a batch of displayed

rectangle patterns.

Calculate
String in —> Payoff
Population

Rectangle

Detect Displayed Activate Rule
—
Information

Score

B Detect Displayed Execute Execute
Rectangle E Crossover

o Information Component Component

Execute
Clearinghouse Execute
Component Mutation
: Component

Figure 5-4. GBML Model of the
Perceptual Decision-making Paradigm



Artificial Neural Network Program Description
Using the ANN model flow diagram in figure 5-2, an object-oriented
design was constructed. A pseudo-code description of the ANN program is

given in Appendix 1. Figure 5-5 illustrates the encapsulation structure.
Program
Driver
(
RTT

* Network Construction
48 N\
Backpropagation
Network:

¢ Feedforward

¢ Backpropagation

ANN
Tools

. J

Figure 5-5. Artificial Neural Network Program Structure

The program driver controls the flow of the ANN program. The RTT
module provides the method to construct feedforward and backpropagation
networks. The module also includes an initialization procedure for the
program. The Backpropagation Network module, a subclass of the RTT
module, contains components of a backpropagation network. Also included
in the module are components of a network using the skeletonization
procedure.r Components in the Backpropagation Network module represent
operations on a particular layer of nodes. Encapsulated within the

Backpropagation Network module, the ANN Tools module provides
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elemental components of a network. Components in the ANN Tools module
provides the method to construct a node and a weight. |
Genetic Program Description
Since the GA model can be considered as a part of the GBML model,
the two models were implemented in one program. Using the GA and
GBML model flow diagrams in figures 5-3 and 5-4, an object-oriented
program was constructed. The pseudo-code of the program is shown in

Appendix 2. Figure 5-6 shows the programming structure.

4 .
Apportionment of Credit:

* Auction
¢ Clearinghouse

f
Program Tools
Driver \ J
a N
Genetic
Algorithm:
¢ Reproduction

¢ Crossover
Genetic
Tools

¢ Mutation
\_ J

Figure 5-6. Genetic Program Structure

The program driver controls the flow of the program. If the GA model is
selected, only reproduction, crossover, and mutation components are
executed. However, if the GBML model is selected, the AOC would first be

executed for all input displayed rectangle pattems.. Then, the GA module
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would be processed. Both the GA and GBML modules encapsulate the
Genetic Tools module. The tools modul_e,_p;ovid”% the means to construct
rule strings and input dispiayéd rectanglje réﬁreéentations.

- Computér Program Options

Tables 5-1 and 5-2 provide a nomenclature for the different variations
of the programs. The variations were needed to show the effectiveness of
the ANN, GA, and GBML models to perform optimally, and to simulate
subject performance. There were three areas of variability: input
representation, subject time data, and mode of operation.

For the ANN program, the dimensional input representation
containe& 20 real-valued input nodes reflecting the height, width, area,
shape, and height2 + width dimensions of each displayed rectangle set (see
figure 4-4). The relational representation contained 20 binary-valued input
nodes representing the rectangles in each displayed set with the largest
dimensional values. The pair-wise relational representation contained 30
binary-valued input nodes shbwmg t.he pan:«wisz comparisons of
dimensional values fw al! rectaagles in each dmplayed set. To test the
effectiveness of th&IxNN nﬁodel, different modes of operation were
necessary. Training on the optimal order (in which the target node
configuration represented the optimal order) could provide a cursory look at
the ability of the model to-learn. If the model could not be trained in this
mode, further attempts to train on subject orders will be fruitless. Training
on the subject order (in which the target node configuration represented the

subject's order) provided a measure of model effectiveness to simulate

e ORIGINAL ®ar
OF POOR QUALITY



ANN Models

QRUCINAL PAQE IS
OF POOR QUALITY

Model

Input
Representation

Mode of
Operation

ANN_A

ANN_B

ANN_C

ANN_D

ANN_E

ANN_F

b |54 | be] b f e | e Sy,

ANN_G

ANN_H

ANN_I

ANN_J

ANN_K

ANN_L

ANN_M

ANN_N

ANN_O

AR EIEEIEIE B EIRIEIE

ANN_P -

’

ANN_Q
ANN_R--

wea
iy &
A

i

| we | pa):

ANN_ & *

ANN_T. j§

ANN_U

ANN_V

ANN_W

ANN_X

»”

ANN_Y

ANN_Z

o

ANN_AA

X

Rl Rl Rl RaiRa iR R Rl Il bl Rl ol Re

Table 5-1. Nomenclature for ANN Models
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GA Models

GA_B
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GA_D
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GA_K

GA_L

GBML_B (X

GBML Models GBML_A |X

GBML_C |X

GBML_D |X

Table 5-2. Nomenclature for GA and GBML Models
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bject performance. Once trained, an ANN model can be switched to
prediction mode to predict outcomes for novel input representations.

For the GA and GBML models, the input representation contained
the height and width dimensions of each displayed rectangle pattern. For
both genetic models, training on optimal order (in which the R’I‘T payoff
score served as the learning criteria) provided a glance at the capabilities of
the models. Once the models showed that learning was possible, training
was switched to subject order. Since the learning criteria for both genetic
models was a scalar objective function value, a translation function was
used to convert the subjgct q_rder to a ﬁtness measure. The prediction mode
of operation for botli’ genetw modds gtmnd‘ad m&stnng translations to
predict payoff outcomes for mpwt representatioré

For the ANN, GA, and GBML models, variations in reaction times
were assigned across different input representations and modes of

operation to account for variability between the four subjects.
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CHAPTER VI
DATA ANALYSIS

Selection of Criterion

To determine the adequacy of the ANN, GA, and GBML models to
simulate human performance, a standard of measurement was needed.
Since the RTT payoff score can readily be interpreted, it was first tested as
the metric. To sample the performance of the ANN models, three models
(shown in table 5-1 as ANN_A, ANN_B, and ANN_C) were trained for 1
epoch on 320 displayed rectangle patterns. To maintain consistency, one
subject's reaction time (Subject 1) was used for all three models. Figure 6-1
shows Subject 1's payoff score profile for 320 patterns (representing sessions
on days 2-5). Figure 6-2, 6-3, and 6-4 show payoff profiles generated by ANN

models.
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Figure 6-1. Subject 1 Payoff Profile
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Figure 6-2. Model ANN_A Payoff Profile Using Subject 1 Reaction Times
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Figure 6-3. Model ANN_B Payoff Profile Using Subject 1 Reaction Times
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Figure 6-4. Model ANN_C Payoff Profile Using Subject 1 Reaction Times
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Observation of figures 6-1 to 6-4 revealed a learning curve for all
payoff score profiles. Initial scores, which ranged between 50 and 70,
improved to between 70 and 90. The learning curve appeared to indicate an
improvement in the ability to order the rectangles as the subject or model
gained experience. However, recall that equation (2.2) showed that reaction
time (delay time) contributed to the payoff scoré calculation. Subject 1's
reaction time profile, shown in figure 6-5, indicates a decrease in reaction
time as the practice patterns increased. Thus, since both the ordering of
the rectangles and the reaction time affect the payoff score, an accurate
assessment of model performance could not depend on the payoff score
alone. |

To illustrate the problem, consider the effects of reaction times given
that the rectangles are optimally ordered for each trial of a session versus
the same reaction times given that the rectangles are worst ordered
(opposite optimal order) for the same session. Using Subject 1 reaction
times, the optimal ordered case generates an average payoff score of 78.42
for 320 trials while the worst ordered case produces an average payoff score
of 56.95. Recall that the payoff scores can range between 0 and 100. For
models using Subject 1 reaction times, however, the payoff mean is further
restricted between 56.95 and 78.42. Because each subject's reaction time
profile is different, the range for payoff means is also different. Thus, the
meaning of error (the difference between a target score and a model

generated score) is relative to each subject's reaction time profile.

A
.
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Figure 6-5. Subject 1 Reaction Time Profile |



To successfully determine model effectiveness across subjects,
therefore, a different metric was required. The metric needed to be
independent of subjects. Such a metric was found in the offset, or error, of
a generated order from a target order. For instance, the generated order:

4 3 1 2
and the target order:

3 4 1 2
creates an offset of two.

The offset metric represents one way of measuring model
performance. Some loss of information, however, is possible through its
use. For instance, the difference of the orders:

4 3 1 2 and 3 4 1 2
represent a slight spatial error--neighboring rectangles are misordered.
Whereas the difference of the orders:

4 1 2 3 and 1 4 2 3
show a much larger spatial error. Nevertheless, the offset metric was
chosen because it provided the simplest measure of model performancé.

ANN Model Analysis

Prior to modeling subject performance in the RTT, the ANN models
must first show the ability to learn the task. Using Subject 1 reaction times
as a testbed, models ANN_A, ANN_B, and ANN_C were trained on 240
rectangle patterns (days 2-4)'for 20000 epochs using random initial weights.
Note that although the amount of training was greater for the model as

opposed to the subject, the objective of this research was not to generate
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process models. The trained weights were then used by models ANN_D,

ANN_E, and ANN_F to predict outcomes for displayed rectangle patterns

on the final session (day 5). To test the effects of trained versus untrained

weights, models ANN_D, ANN_E, and ANN_F also used the random

initial weights to predict outcomes for day 5 displayed rectangle patterns.

The mean scores for outcomes of models ANN_D to ANN_F are shown in

table 6-1. Since the analysis was done across input representations instead

of subject reaction times, the payoff score was used as the standard of

comparison.
Representation
Subject Pair-wise
Dimensional Relational Relational
Model: ANN_D Model: ANN_E Model: ANN_F
Trained Weights: Trained Weights: Trained Weights:
l Mean Payoff = 76.31 Mean Payoff = 76.11 Mean Payoff = 76.26

Mean Payoff = 69.24

Untrained Weights:

Untrained Weights:

Mean Payoff = 69.25

Untrained Weights:
Mean Payoff = 67.80

Table 6-1. Artificial Neural Network Payoff Results

after 20000 Training Epochs on Optimal Order

An analysis of variance (ANOVA) table was constructed to show the

effects of training in models ANN_D, ANN_E, and ANN_F. Table 6-2

shows a two-way ANOVA ‘with Training (trained or untrained weights) as

one effect and Representation (dimensional, relational, and pair-wise




relational) as the other effect. The ANOVA model is as follows:

Payoffj;x = p + Training; + Representation; +
(Training*Representation);; + errorijk

fori=1,2; j=1,2,3; and k=1,...,80.
where | is the population mean of the Payoff and
(Training*Representation) is the interaction effect of training and input
representation. The analysis found the training effect to be highly
significant, Pr{F(5,474)>84.49}=0.0001. Thus, training was effective in

improving payoff scores across all three ANN models.

ANOVA Procedure
Dependent Variable: Payoff

Sum of Mean
Source DF Squares sSquare F Value Pr > F
Model s 6764.2609939% 1352.8521988 17.17 0.0001
Error 474 37347.5677842 78.7923371
Corrected Total 479 44111.8287780
Source DF SS Mean Square F Value Pr > F
Training 1 6657.3972301 6657.3972301 84.49 0.0001
Representation 2 49,6538772 24.8269386 0.32 0.7299
Training*Representation 2 57,2098865 28.6049432 0.36 0.6958

Table 6-2. Two-way ANOVA of Training for Optimal Order.
Analysis of ANN Models of Subject Performance

Once the ANN models were shown to be capable of learning, the
models were then applied to simulate subject performance. To increase
fidelity to subject training conditions, 12 models (ANN_P to ANN_AA)
were trained for one epoch using displayed rectangle patterns for sessions
on days 2-4. The 12 models used for the 4 different subject reaction time

profiles and the 3 different input representations. The trained weights
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from the models were then used by models ANN_D to ANN_O to predict
performances for day 5 displayed rectangle patterns. To test the effect of
trained versus untrained weights, initial random weights were also used
by models ANN_D to ANN_O to predict outcomes for day 5 patterns. The
difference between offsets generated by models using untrained weights
and trained weights were then compared across subject reaction times and
input representations. Thus, the amount of offset difference measured a
model's learning capability. The mean of offset difference is calculated as
follows:

Offset_difference_mean = Y (untrained_model; - trained_model;) / 80

for i=1,...,80
where untrained_model; is the number of offsets generated by the model
using untrained weights for displayed rectangle pattern i, and
trained_model; is the number of offsets generated by the model using
trained weights for pattern i. Thus, a positive mean of difference value
signifies that leanﬁné has occurred. A negative mean of difference value,
however, indicates that the model has not learned. Table 6-3 shows the
mean of the offset differences per displayed rectangle pattern for each of the

models.
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Subject

Representation

Pair-wise
Dimensional Relational Relational
Model: ANN_D Model: ANN_E Model: ANN_F

' Mean of Difference®: 0.075 | Mean of Difference: -0.025 | Mean of Difference: 0.575
Model: ANN_G Model: ANN_H Model: ANN_I

’ Mean of Difference: 0.125 | Mean of Difference: 0.050 | Mean of Difference: 0.288
Model: ANN_J Model: ANN_K Model: ANN_L

’ Mean of Difference: 0.150 | Mean of Difference: -0.138 | Mean of Difference: 0.350
Model: ANN_M Model: ANN_N Model: ANN_O

* Mean of Difference: 0.088 | Mean of Difference: 0.075 | Mean of Difference: 0.400

* Mean of difference between results of model using untrained weights and model

using trained weights.

Table 6-3. Artificial Neural Network Offset
Results after 1 Training Epoch on Subject Order

An ANOVA table was constructed to determine the significance of

the offset differences in models ANN_D to ANN_O. Table 6-4 shows a two-
way ANOVA with representation and subject reaction time (Subject 1,
Subject 2, Subject 3, and Subject 4) as the two effects. The ANOVA model is
as follows:

Offset_differencejmk = | + Representation; + Subjectm + (6.1
(Representation*Subject)im + errorjmx
for j=1,2,3; m=1,2,3,4; and k=1,...,80.

The analysis found the Representation effect to be significant,
Pr{F(2,948)>6.75}=0.0012.



ANOVA Procedure

Dependent Variable: Offset_difference

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 11 34.98645833 3.18058712 1.49 0.1304
Error 948 2027.01250000 2.13819884
Corrected Total 959 2061.99895833
Source DF SS Mean Square F Value Pr > F
Representation 2 28.85833333 14.42916667 6.75 0.0012
Subject 3 1.06145833 0.35381944 0.17 0.9196
Representation*Subject 6 5.06666667 0.84444444 0.39 0.8825

Table 6-4. Two-way ANOVA of Training on
Subject Order for 1 Epoch

To find the source of significance within the representation effect, the least
signiﬁcaht difference (LSD) procedure was used. The procedure conducts
multiple pair-wise t-test comparisons of treatment means to categorize
similarities and differences. Table 6-5 shows the groupings of means
across input representations and subject reaction time profiles. The pair-
wise relational model means were significantly different than means for
relational and dimensional models. Thus, even after only one epoch of
training, the model showed the ability to improve performance. Althoﬁgh
the input representation effect was significant, the overall model was not,
Pr{F(11,948)>1.49}=0.1304. Thus, to determine the full capability of the ANN

models to learn subject order, more training was performed.



T tests (LSD} for variable: Offset _difference

NOTE: This test controls the type I compariscnwise error rate not the
experimentwise error rate.

Alpha= 0.05 df= 948 MSE= 2.138199
Critical Value of T= 1.96
Least Significant Difference= 0.2269

Means with the same letter are not significantly different.

T Grouping Mean Observations Representation
A 0.4031 320 Pair-wise Rel.
B 0.1094 320- Dimensional
B
B -0.0094 320 Relational

Alpha= 0,05 df= 948 MSE= 2.138199%
Critical Value of T= 1.96
Least Significant Difference= 0.262

"Means with the same letter are not significantly different.

T Grouping Mean Observations Subject
A 0.2083 240 1
A
A 0.1875 240 4
A
A 0.1542 240 2
A
A 0.1208 240 3

Table 6-5. LSD Analysis of Training on

Subject Order for 1 Epoch

74



To insure the weights were trained (stabilized from major
fluctuations), the models ANN_P to ANN_AA were run for 20000 epochs.
The trained weights were then used by models ANN_D to ANN_O to
predict performances for day 5 rectangle patterns. To test the effect of
trained versus untrained weights, initial random weights were again used
by models ANN_D to ANN_O to predict outcomes for day 5 patterns. Table

6-6 shows the offset differences for the models.

Representation

Subject Pair-wise
Dimensional Relational Relational
Model: ANN_D Model: ANN_E Model: ANN_F

: Mean of Difference®: 0.613 | Mean of Difference: 0.612 | Mean of Difference: 1.162
Model: ANN_G Model: ANN_H Model: ANN_I

* Mean of Difference: 0.325 | Mean of Difference: 0.450 | Mean of Difference: 1.012
Model: ANN_J Model: ANN_K Model: ANN L

’ Mean of Difference: 0.188 | Mean of Difference: 0.750 | Mean of Difference: 0.950
Model: ANN_.M Model: ANN_N Model: ANN_O

: Mean of Difference: 0.112 | Mean of Difference: 0.562 | Mean of Difference: 1.112

* Mean of difference between results of model using untxr'rained weights and model
using trained weights.

Table 6-6. Artificial Neural Network Offset Results
after 20000 Training Epoch on Subject Order

An ANOVA table was constructed to determine the significance of
training for 20000 epochs in models ANN_D to ANN_O. Table 6-7 shows a

two-way ANOVA with input representation and subject reaction time as
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the effects. The ANOVA model is the same as {(6.1). The analysis found not
only the representation to be significant, Pr(F(2,948)>18.43)=0.0001, but also
the overall model to be significant, Pr{F(11,948)>3.99}=0.0001. Thus,
training for 20000 epochs significantly improved learning from training for

1 epoch.
ANOVA Procedure

Dependent Variable: Offset_difference

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 11 109.33333333 9.93939%394 3.99 0.0001

Error 948 2359.85000000 2.48929325 _
Corrected Total 959 2469,18333333

Source DF SS Mean Square F Value Pr > F
Represgsentation 2 91.75208333 45.87604167 18.43 0.0001
Subject 3 - 6€.60000000 2.20000000 0.88 0.4490
Representation*Subject 6 10.98125000 1.83020833 0.74 0.6213

Table 6-7. Two-way ANOVA of Training on
Subject Order for 20000 Epochs

Further investigation using the LSD procedure shows the importance of the
type of input representation in determining a model's ability to learn. Table
6-8 shows that the means of differences were significant for each of the
input representations. The pair-wise relational models learned most
effectively with a 1.059 mean reduction of offset difference. Relational
models did not learn as well with a 0.5938 mean reduction of offset
difference. The dimensional model learned the least with a 0.3094 mean
reduction of offset difference. Relatively, the pair-wise relational models

were far superior in learning than models with the other two
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representations. Perhaps the success of the pair-wise relational models

could be attributed to their ability to capture configural feature information
used by the subjects.

T tests (LSD) for variable: Offset_difference

NOTE: This test controls the type I comparisonwise error rate not the
experimentwise error rate.

Alpha= 0.05 df= 948 MSE= 2.489293
Critical Value of T= 1.96
Least Significant Difference= 0.2448

Means with the same letter are not significantly different.

T Grouping Mean Observations Representation
A ’ 1.0594 320 Pair-wigse Rel.

B 0.5938 320 Relational

o4 0.3094 320 Dimensional

Alpha= 0.05 df= 948 MSE= 2,489293
Critical Value of T= 1.96
Least Significant Difference= 0.2827

Means with the same letter are not significantly different.

T Grouping Mean Observations Subject

A 0.7958 240 1
A
A 0.6292 240 3
A

A 0.5958 240 2
A
A 0.5958 240 4

Table 6-8. LSD Analysis of Training on Subject Order for
20000 Epochs
Weights Analysis for Pair-wise Relational Models

The significance of the pair-wise relational models raised an
important question. Were the weights personalized to each subject? Or did

the weights reveal diagnostic capabilities common to all subjects? To



answer the question, weights trained by a pair-wise relational model using
one subject reaction time profile (ANN_R, ANN_U, ANN_X, or ANN_AA)
were used to predict performances for models with a different reaction time

profile. The configuration of the test was as follows:

Train on Model: Predict on Models:

ANN_R ANN_I, ANN_L, ANN_O
ANN_U ANN_F, ANN_L, ANN_O
ANN_X ANN_F, ANN_I, ANN_O
ANN_AA ANN_F, ANN_I, ANN_L

Each training model was run for 20000 epochs on 240 rectangle patterns
(days 2-4). The trained weights were then used by the prediction models to
generate offset profiles for day 5 patterns. Table 6-9 shows the offset means
per pattern for the 80 day-5 patterns. The right-hand column represents
the average offset of 3 models, whereas the left-hand column shows one

model's means offset.

Subject Profile Train on Same Subject Train on Different Subject
for Prediction Profile as Prediction Model Profile as Prediction Model
-1 Offset Mean: 2.138 Offset Mean: 2.117
2 Offset Mean: 2.000 Offset Mean: 2.196
3 Offset Mean: 2.175 Offset Mean: 2.150
4 Offset Mean: 2.138 | Offset Mean: 2.138

Table 6-9. Artificial Neural Network Offset
Results for Interchanged Weights

78



Comparisons between means in table 6-9 clearly show that a
significant difference does not exist between the columns. Thus, weights
trained on one subject reaction time profile could be used to predict on
another profile without significant performance variations. Perhaps the
trained weights for the pair-wise relational models carried diagnostic
information common to all subjects.

Skeletonization

To unlock the success of the pair-wise ANN model, a technique was
needed to look inside its workings. In particular, the technique should
determine which input nodes were relevant and, therefore, attended‘ by all
models. Mozer and Smolensky (1989) developed a method, called
skeletonization, to compute a measure of relevance which identifies critical
input or hidden layer nodes and trims least relevant nodes. The
skeletonization process is an iterative one. Backpropagation training is
first performed to meet a performance criteria. Once met, the ANN model
then trims the least relevant node. The process is repeated until the
training criteria can no longer be met. The skeletonization procedure was
adapted to the pair-wise relational ANN model in order to find a common

diagnostic set of input nodes. Figure 6-6 shows the adaptation.
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Figure 6-6. Skeletonization Flowchart
The adaptation consisted of two phases. The first phase involved training
using the backpropagation algorithm. Once the maximum number of
training epochs was reached (arbitrarily set at 100), the skeletonization
procedure was executed. After the final input pattern was presented, and
the relevance parameters updated, the least relevant input layer node was
trimmed from the model. The relevance measure, P, of an input node, i, is

calculated as follows:



P = Z a (§) * WGXi) * X(1)
J

Where W represents weights from input node i to hidden node j and X
represents input layer nodes. Once the least relevant node was trimmed,
backpropagation learning occurred once again to train the reduced model.
After training, the skeletonization procedure was again executed. This
process continued until all input layer nodes had been trimmed. For a
more detailed description of the skeletonization procedure, see Appendix 1.

Figures 6-7 and 6-8 show skeletonization results of the pair-wise
relational models. Figure 6-7 depicts the trend of average payoff score at the
final epoch before skeletonization. The overlay shows the trend of all four
pair-wise relational models (ANN_F, ANN_I, ANN_L and ANN_O).
Figure 6-8 shows the number of output layer nodes surpassing the error
threshold (threshold < target node value - output layer node value) for the
pair-wise relational models. As the number of trimmed nodes increased,
the average payoff score decreased, and the number of nodes surpassing

the threshold increased.
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To reveal the importance of each input layer node, a profile of the
trimmed nodes was made. By showing which nodes were relevant among'
all input layer nodes, a set of attended dimensional features in the RTT
could be classified. Figure 6-9 shows a representation of the state of each of
the 4 models with different subject reaction time profiles after 10 nodes have
been trimmed. For each model, the remaining nodes are shown as
circular numbered nodes. Each untrimmed pair-wise relational model has
30 input layer nodes divided into five feature representations as discussed
in Chapter III. After 10 nodes have been trimmed, figure 6-9 shows 21
height (H) nodes, 19 width (W) nodes, 14 H¥*W nodes, 10 H+W nodes, and 16
H2+W nodes remaining. Thus, after executing the skeletonization
procedure, the height and width dimensions appeared to be more
diagnostic than the others.

As a tool, the skeletonization procedure can analyze an ANN model
for the most, as well as least, relevant nodes. Its application to the pair-
wise relational model was not intended to give a detailed description of the
worth of each input node. Rather, it was meant to give an overview of the
content of the nodes with respect to the relevance of input features. In
terms of the error signature discussed in Chapter II, the height order
heuristic has a slope of 1 on the In(height) X In(width) gréph. Since the
optimal (H2+W) heuristic has a slope of 1/2, the similarity between them
makes height an attractive alternative that is perceptually available.
Perhaps the skeletonization procedure was able to.capture the diagnosticity

of the height heuristic.
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GA Model Analysis

Before the GA models could be used to model subject performance,
the models needed first to show the ability to learn the RTT. Thus, models
GA_A, GA_B, GA_C, and GA_D were trained on the payoff scores
generated by the optimal order for 1200 generations on 240 rectangle
patterns (days 2-4). The payoff scores were average scores of ail 50 rules in
the population per each trial. The criteria of learning, as mentioned in
Chapter 4, was the RTT payoff score. Unlike the ANN models, which had
one measure of performance (one offset) per pattern, the genetic learning
models had 50 measures (one per rule string in rule base) per generation.
1200 training generations were used to insure stabilization of the rule
populations. The trained rule strings were then used by models GA_E,
GA_F, GA_G, and GA_H to predict outcomes for displayed rectangle
patterns on the final session (day 5). To test the effect of trained versus
untrained rule strings, the initial, untrained rule strings were also used by
models GA_E to GA_H to predict outcomes for day-5 patterns. Table 6-10
shows the difference between offsets generated by models using untrained

and trained rule strings.



Model

Subject

Model: GA_E

' Mean of Difference: 15.138
Model: GA_F

2 Mean of Difference: 77.638
Model: GA_G

’ Mean of Difference: 34.512
Model: GA_H

* Mean of Difference: 58.888

Table 6-10. Genetic Algorithm Offset Results after
1200 Training Generations on Optimal Order

An ANOVA table was constructed to determine the significance of the offset
differences in models GA_E to GA_H. Table 6-11 shows an one-way
ANOVA with subject reaction time as the effect. The ANOVA model is as

follows:

Offset_differencenx = 4 + Subjecty, + errorpk (6.2}

for m=1,2,3,4; and k=1,...,80.



ANCVA Procedure

Dependent Varlable: Offset_difference

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 3 180023.,43750 60007.81250 21.50 0.0001
Error 316 881949.95000 2790.98085
Corrected Total 319 1061973.38750
Source OF Type I SS Mean Square F Value Pr > F
Subject 3 180023.43750 60007.81250 21.50 0.0001

Table 6-11. One-way ANOVA of Training on
Optimal Order for 1200 Generations
The analysis found the subject reaction time profiles to be highly
significant, Pr{F(3,316)>2 1.50}=0.0001. Thus, the amount of learning done
by models GA_E to GA_H depended highly on the reaction times of the
subjects. Nevertheless, 'all of the models showed performance
improvements through training.
Anal_ysis of GA Models of Subject Performance

Due to variations in subject reaction times, the GA learning criteria
needed to change in order for GA models to simulate subject performance.
To modify the criteria, a rewarding scheme based on the offset metric was
established as follows:

0 Offset -> payoff score = 100

2 Offsets > payoﬁ' score = 66

3 Offsets

4 Offsets

> payoff score = 33

> payoff score = 0



Thus, as the offsets are generated by subject and GA model ordering
differences, an improvement in payoff performance will naturally reduce
the number of offsets.

Using the revised learning criteria, the GA models were trained on
subject performance. The GA rule population for models GA_I, GA_J,
GA_K, and GA_L were trained on 240 patterns (days 2-4). The trained rule
strings were then used by models GA_E, GA_F, GA_G, and GA_H to
predict outcomes for displayed rectangle patterns on the final session (day
5). To test the effect of trained versus untrained rule strings, the initial,
untrained populations were also used by models GA_E to GA_H to predict
outcomes for day 5 patterns. The difference between offsets generated by
models using untrained and trained rule strings were then contrasted
across subject reaction times. Table 6-12 shows the mean of the offset
differences per displayed rectangle pattern for each of the models. All of

the models showed performance improvements through training.

Model
Subject

Model: GA_E

! Mean of Difference: 21.175
Model: GALF

2 Mean of Difference: 73.462
Model: GA_G

3 Mean of Difference: 60.862
Model: GA_H

* Mean of Difference: 55.825

Table 6-12. Genetic Algorithm Offset Results
on Subject Order
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An ANOVA table was constructed to show the effects of training models
GA_E to GA_H on subject order. Table 6-13 shows an one-way ANOVA
with subject reaction time as the effect. The ANOVA model is the same as
(6.2). The analysis found, as in optimal order training results, the subject
reaction time profiles to be highly significant, Pr{F(3,316)>13.24}=0.0001.
Thus, although the models shbwed performance improvements, those

improvements depended greatly on the reaction times of the subjects.

ANCVA Procedure

Dependent Varlable: Offset_difference

Sum of- Mean
Source DF Squares Square F Value Pr > F
Model 3 120098.41250 40032.80417 13.24 0.0001
Error 316 955690.47500 3024.33695
Corrected Total 319 1075788.88750
Source DF | sSS Mean Square F Value Pr > F
Subject 3 120098.41250 40032.80417 13.24 0.0001

Table 6-13. One-way ANOVA of Training on
Subject Order
GBML Model Analysis

To determine whether the GBML models were capable of learning,
the models were trained on 320 patterns (days 2-5) for 100 generations. The
payoff profile generated by the models GBML_A, GBML_B, GBML_C, and
GBML_D are shown in figures 6-10 to 6-13. The payoff score profile
represents the average pa.yoff score for the 50 rules in the population traced
over 100 generations. After experimenting with different combinations of

model parameters, the one with the f‘ollowi'ng settings was chosen based on
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performance: mutation probability set at 0.5; reward multiplier set at 1.1
times the bid; and the payoff threshold was set to geometrically increase
from 55.0 to 90.0. Figure 6-10 to 6-13 shows that the GBML models are more
volatile than previously expected. One rationale for the erratic behavior
could be found in the mutation rate. Since earlier attempts of lower rates
failed to improve performance, the raté was set at 0.5 to insure variability.
However, with the increased rate, stability was sacrificed. Another reason
for the model behavior could be found in the payoff threshold. As the
threshold increased to a value not attainable by the models, performance

became erratic and unpredictable.
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Discussion of Results

Of all the models, the ANN structure shows the most promise.
Through analysis of the learning abilities of the different representations,
strategies of human decision-making could be inferred. The dimensional
ANN models showed some learning abilities. Relational ANN model
results show definite signs of improvement. Nevertheless, initial
evaluations after 1 epoch indicate slow network responsiveness for both
representations. The pair-wise relational ANN appears to be the most
capable network to model skilled decision-making. Initial evaluations after
1 epoch indicate signs of learning. Training for 20000 epochs confirms
initial observations. Skeletonization results suggest height and width cue
utilization. However, the skeletonization process--the decision of when to
trim the nodes and when the network has reached the minimal
configuration--is crudely approximated from a graph, and should be
considered only a rough approximation.

GA models also showed the ability to learn subject performance.
However, since the resultant rule strings were the products of random
search processes, the amount of learning varied widely from one model to
the next. In addition, each rule string was unique, and did not reveal an
accumulation of learning from past experience (as in the ANN weights).
Thus, a skeletonization-like procedure did not exist for the GA models.
Furthermore, the trained population of rule strings converged on one
unique representation. The trained rule string for model GA_I interpreted

to the heuristic H2/W3. The rule for model GA_J interpreted to the
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heuristic H¥W3, The rule for models GA_K and GA_L was also translated
to H3/W3, In spite of the lack of population diversity, the models produced
heuristics similar to the optimal heuristic by training on subject orders.
GBML models were not able to learn subject performance with any
consistency. In order for the model to learn, a priori knowledge of the
payoff score range, with respect to different subject reaction times, was
needed. Furthermore, the balance between stability and learning was
difficult to reach. Therefore, too much subject-dependent information was

required by the GBML model to merit the effort of continued modeling.



* Relational

The relational models showed better results than the dimensional
counterparts. However, compared to the pair-wise relational model
results, the relational ANNs performed poorly.

* Pair-wise Relational

The pair-wise relational results were the best of the three types of models.
The success of the models suggests that subjects may attend to configural
features to more than individual features. Thus, a person may see that
rectangle A is taller than rectangle B rather than rectangle A is 2X mm tall
and rectangle B is X mm tall. This supposition is consistent with the
findings of Gluck, Bower, and Hee (1989).

In addition to diagnosticity, the internal structure of the ANNs could also
be examined. An examination of the internal structure using the
skeletonization procedure revealed the relevance of each node based on the
structure of past input patterns. The relevant nodes denoted the attended
input features. Assuming the ANN model attuned to the same set of input
features as the subject. The relevant nodes of the ANN model, therefore,
could also represent the features the subject considered most diagnostic to
the RTT. A simplistic application of the skeletonization procedure showed

height and width as the diagnostic features. However, the skeletonization

procedure provided only a cursory look at feature diagnosticity.
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GA models generated rule strings which successfully simulated
subject performance. The fact that each of the rule string populations
converged to one unique rule representation after training presented the
following dilemma:
¢ Heuristic interpretation

In terms of the In(height)XIn(width) graph, model GA_I generated a slope
of 3/2, and models GA_J, GA_K, and GA_L all produced slopes of 1. Thus,
models GA_J to GA_L all formulated heuristics similar to the optimal
heuristic while training on subject order.

¢ System volatility

If subject performance could be described by a rule string, then the
performance of the model could be excellent. However, if the rule string
required a perceptually unavailable features--like 1/WA2--the model could be
difficult to interpret psychologically.

The success of the GA models, therefore, can be attributed to a rule string
representation which sufficiently describes subject performance.
Contrary to De Jong's (1990) characterizations of the classifier
(GBML) approach, the behavior of the GBML models was chaotic. This
behavior could be attributed to the following factors:
¢ Function of BBA not captured in MBBA
The bucket brigade algorithm contributes to the formation of default
hierarchies of rules within a classifier system (Grefenstette, 1987). The
default hierarchies are constructed through multiple transactions of each
message among the rule strings. The link that is created between rule
strings that have won bids to the same message defines a set of global rules.
The stability of classifier systems is due largely to the existence of these

links. Thus, as the GBML model of the RTT restricted trading of messages
to only one transaction, the links (and the stability) did not exist.



¢ A priori information not available
Because a payoff threshold was required for the GBML models, knowledge
of the range of the payoff score (in terms of the subject reaction times) was
needed. Thus, unlike the ANN models, the GBML models required both
reaction time and rectangle ordering information to learn the RTT.
Implications of Findings and Suggestions for Future Research
Words of caution must accompany the following observations. The
RTT environment is relatively simplistic with few perceptual cues available
to a subject. To model skilled human decision-making in a more complex
task would require a thorough analysis of the environment. Findings of
this research suggests the following:
e Concentrate on pair-wise relational representations
Results of the ANN models suggest that configural features are more
informative than individual features. If the pair-wise relational models are
indicative of human decision-making processes, then configural features
in the environment should play a key role as input representations in
future models. Rather than focussing on dimensional aspects of graphical
features, perhaps the emphasis should be on relational characteristics (i.e.
taller, smaller, larger, etc...).
¢ Seek rules to exploit consistencies in subject performance
Success of the GA models suggests that, given sufficient rule string and
input representations, subject performance could be simulated by genetic
algorithm techniques. '
Future research in skilled decision-making should address
upscaling current GA and ANN models to simulate human performance
in more complex environments. In particular, the following issues need to
be faced:
* Rule string selection

To use a GA model to simulate decision-making in complex settings, a
perceptually available rule string representation is needed. Furthermore,
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obje.cﬁve functiqns should generate values that relate with perceptually
available quantities (i.e. shape or area).

o Input feature selection

Complex environments offer numerous cues as either primitive features,
emergent features, or artifactual elements. To model human
decision-making in such settings, a metric to select relevant features is
needed.

Pao described the input selection issues as follows:

The choice of features for the description of objects--
which may be concepts or physical objects or situations or
events--is a difficult but essential preprocessing task in the
implementation of computer-based pattern recognition.

To some extent, there is no right or wrong choice, as
long as sufficient information has been included in the set of
feature values. However, inappropriate choices lead to the
need for complex decision rules or mappings ... whereas
incisive choices result in simple and comprehensive rules.

The task of determining the [feature representation] is a
crucial part of implementing computer-based pattern
recognition, and the problem remains with us in adaptive
pattern recognition. Often, however, we have the opportunity
to discover adaptively which of the [feature representation]
features are important and which are irrelevant.

(Pao, 1989, p. 9)

Input feature representations for ANN models described in this
thesis did promote efficient model behavior. Perhaps the finding of the
significance of pair-wise relational features could aid feature selection in

the future.



APPENDIX 1
PSEUDO-CODE OF ARTIFICIAL NEURAL NETWORK MODEL OF
PERCEPTUAL DECISION-MAKING
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Note that all functions and files are enclosed by <>.
Program Description
The program is an artificial neural network with a 2-layer weights
architecture and updating after each pattern.
Program Initialization
Program initialization takes place through reading files
<input/bp_file> and <Tulga_file> and through user interface at execution.
User interface prompts user to choose type of trace (per epoch or per
pattern) and skeletonization. <input/bp_file> is read by
<Backprop::initialize>. The following variables/constants are read by
<Backprop::initialize>:
1) Number of rows of input signal pattern
2) Number of columns of input signal pattern
3) Number of rows of target pattern
4) Number of columns of target pattern
5) Number of signal patterns
6) Number of training epochs
7 Number of hidden layer elements
8) Starting learning rate. Learning rates are used for updating weights
hidden_layer_weights% 7hridden_1ayer_weights + learning_rate *
input_node_value * hidden_delta_value
output_layer_weights = output_layer_weights + learning_rate *
hidden_node_value * output_delta_value

9) Ending learning rate
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10) Type of data (binary or bipolar)

11) Learning threshold (allowable difference between target and output)

12) Values of input and target slab nodes (target slab values initialized
to 0)

13) Values of input and output layer weights
(random value x such that -1< x < 1) read from <input/weight_file>

The following variables/constants are calculated by <Backprop:initialize>:

1) Learning rate multiplier (geometric progression based on total
number of training patterns)

2) Input vector length (number of rows * number of columns)

3) Target vector length (number of rows * number of columns)

4) Relevance toggles (initialized to 0)

<Tulga_file> is read by <Tulga::init_Tulga>. In addition, files

<output/ordering>, <output/payoffs>, and <output/pattern_tr> are

initialized and replace old files. The following variables/constants are read

by <Tulga::init_Tulga>:

1) Identification number of boxes to be processed

2) Subject reaction time

The following variables/constants are calculated by <Tulga::init_Tulga>:

1) Epoch counter (initialized to 1)

2 Pattern counter (initialized to 1)

3) Payoff score, average, sum, threshold limit, and standard deviation

(initialized to 0)

102



Program Execution

The program contains a main loop which executes one of the

following three subroutines:

1)
2)
3)

Backpropagation learning
Feedforward

Skeletonization

Nested within the main loop is a secondary loop composing the first

subroutine. The secondary loop consists of the following elements:

1)

2)

<Tulga::feedforward> executes <Backprop::FFhidden> and

<Backprop::FFoutput>

<Backprop::FFhidden> sums hidden slab node inputs as follows:
hidden_nodes_sum_inputs = hidden_nodes_sum_inputs +
hidden_weights_strength * input_nodes_value

<Backprop::FFhidden> also calculates the hidden slab node
activations using the binary logistic sigmoid function

<Backprop::FFoutput> sums output slab node inputs as follows:
output_nodes_sum_inputs = output_nodes_sum_inputs + »
output_weights_strength * hidden_nodes_activation

<Backprop::FFoutput> also calculates the output slab node
activations using the binary logistic sigmoid function

<Tulga::cognition> calculates cardinality of

output_nodes_activations

(strength order), converts strength order to selection order, writes

selection order to file <output/ordering>, calculates payoff score and
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3)

4)

optimal order, converts optimal order to optimal strength order, sets
target vector elements based on strength order, and calculates
over_thresh (number of output_nodes_activations surpassing
allowed threshold from target_nodes_value)
<Tulga::backpropagation> executes <Backprop::BPoutput> and
<Backprop::BPhidden>
<Backprop::BPoutput> calculates error values as follows:
error_value = target_nodes_value - output_nodes_activations
<Backprop::BPoutput> calculates the output layer delta values as
follows:

output_delta_value=

logistic_sigmoid_derivative(output_nodes_activations) *

error_value
<Backprop::BPhidden> calculates the hidden layer delta values as
follows:

hidden_delta_value =

logistic_sigmoid_derivative(hidden_nodes_activations) *

Y (output_layer_weights * output_delta_value)
<Tulga::update_weights> updates weights using the delta rule and
executes subroutines based on following conditionals:
if epoch counter is equal to the maximum number of training epochs,

write message to file <output/payoffs>, save hidden and output

layer weight strengths to file <output/new_weights>, if per

epoch trace is on, calculate payoff statistics and save results to
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file <output/payoffs>, and return 0 as current status

if pattern counter is equal to maximum number of patterns and the
number of error terms less than the threshold is within limits,
write message to file <output/payoffs>, save hidden and output
layer weight strengths to file <output/new_weights>, if per
epoch trace is on, calculate payoff statistics and save results to
file <output/payoffs>, and return 0 as current status

if pattern counter is equal to maximum number of patterns, if per
epoch trace is' on, calculate payoff statistics and save results to
file <output/payoffs> else save current payoff and threshold
information to file <output/pattern_tr>, reset pattern counter
to 1, increment epoch counter, set threshold counter to 0,
return 1 as current status

if none of the above conditions hold, if per epoch trace is off, save
current payoff and threshold information to file
<output/pattern_tr>, increment pattern counter, and return 1
as current status

if current status is 0, the program exits the

secondary loop

If the feedforward option is selected, the following loop is executed for the

maximum number of epochs:

<Tulga::feedforward> (as explained in secondary loop description)

<Tulga::cognition> (as explained in secondary loop description)

If the skeletonization option is selected, the following loop is executed:
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1 Backpropagation Learning (as explained in secondary loop
description) executes for the maximum number of training epochs.'

2) <Backprop::FFhidden> (as explained in secondary loop description)
3) <Backprop::FFoutput> (as explained in secondary loop description)
4) <Tulga::cognition> (as explained in secondary loop descriptioh)
5) <Backprop::SKoutput> sets the error values as follows:

if output_nodes_activations is greater than

target_nodes_value, set error_value to -1.0 else set

error_value to 1.0 next calculate the

output layer delta values based on the errors
6) <Backprop::SKhidden> calculates the hidden layer delta values and

the input node relevance values as follows:

input_nodes_relevance = 0.2 * input_nodes_value *

Y (hidden_layer_weights*hidden_delta_value) +

0.8 * input_nodes_relevance

Note: constants are based on paper by Mozer and Smolensky

(1989).
To complete the skeletonization option, <Backprop::SKremove> and
<Tulga::reset> are executed and a toggle is returned to determine
continuation of program. <Backprop::SKremove> calculates the irrelevant
node (node with smallest relevance value), writes relevance value of all
nodes to file <output/payoffs>, sets input_nodes_value of irrelevant node to
0.0, sets all weights emanating from the irrelevant node to 0.0, reset all

input_nodes_relevance to 0.0, and sets toggle to 0 if all nodes have been
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"trimmed". If toggle is set to 0, skeletonization terminates. <Tulga::reset>
resets epoch and pattern counters to 1, payoff average, payoff sum,
threshold limit and standard deviation of payoffs to 0, and resets learning

rate to value specified initially in file <input/bp_file>.
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APPENDIX 2
PSEUDO-CODE OF GENETIC MODEL OF
PERCEPTUAL DECISION-MAKING
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Program Description
The program contains options to execute either a pure genetic
algorithm or a GBML.
Program Initialization
Program initialization takes place through reading files
<input/rulefile> and <input/rec_file> and through user interface at
execution. User interface prompts user to choose either a pure GA or
GBML and the number of generation to execute. Files <output/trace> (trace
of rules at each generation) and <output/rule_strength> (strength of each
rule at each generation) are initialized. The following variables/constants
are read by <Cs::rule_init> from file <input/rulefile>:
1 Random number seed
2) Upper limit of random number sequence
3) Lower limit of random number sequence
4) Probability of mutation in the genetic algorithm (string will mutate if
probability is lower than stated)
5) Bid percentage (for GBML) in decimal form
6) Reward (for GBML) as percentage (in decimal form) of bid
b Begin payoff threshold (for variable threshold in a GBML)
8) End payoff threshold (for variable threshold in a GBML)
9) Length of rule string
10) Number of strings in population
11) Number of components in rule string (ex. in a+b there are three

components)
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12) Rule string bits

13)  Original rule strength (for GBML)

The following variables/constants are read by <Cs::rule_init> from file

<input/rec_file>:

1) Number of rectangle sets

2) Identification number of boxes to be processed-

3) Height and width of boxes

4 Subject reaction time

In addition to reading variables and constants, the following subroutines

are executed by <Cs::rule_init>:

1) <Random::initialize_random> sets the seed, upper and lower limits
of pseudo—random number generator

2) <Genetic::set_mutate_probability> sets the genetic algorithm
mutation probability _

3) <Cs::set_payoff_information> sets the bid percentage, reward
percentage, and payoff threshold. Also calculates the threshold
multiplier (uses geometric progression based on total number of
generations)

Program Execution
If the pure GA is chosen, the following functions are executed for

number_of_generations * number_of_patterns times:

1 <Cs::pureGA> executes <Cs::translate>, rule_strength, and offsets

from optimal order for all rule strings

<Cs::translate> uses the current rule interpretation:
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2)

3)

4)

h *a (operators) w Ab

where h is height of rectangle, w is width of rectangle, and

operators are +, -, *, /.

aa bb operators

ex. 1001111=h"2/w

based on the rule used, a value is recorded for each rectangle

and ordered rule_strength represents the payoff score

calculated given the ordering provided by <Cs::translate>

offsets are calculated by comparing the optimal order and the

<Cs::translate> order
<Cs::print_rules> writes rules of the current generation to file
<output/trace> and rule strength of all rule strings (as well as the
average rule strength) to file <output/rule_strength>
<Genetic::reproduce> reproduce performs the reproductive function
within the genetic algorithm. It takes the strongest (probabilistically)
rule to replace the weakest rule. Each rule is given a slot on the
"roulette wheel" based on the strength. The wheel is spun n times
for n rule strings in the population. The new population then
replaces the old.
<Genetic::crossover> performs "mating” between rules. It identifies
the number of pairs in population, pairs available rule mates, selects
crossover site, and crosses bit information between pairs (this portion

of code signifies a major departure from conventional crossover
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procedures in that only a rule segment is crossed between mates)

5) <Genetic::mutate> mutate changes at most one rule string at
random given a probability of change. If the pseudo-random number
generated is less than the mutate probability, a mutation sector (i.e.
rule components) is randomly generated and changed (if random
number is greater than .5 set binary allel to 1 otherwise, set to 0)

If the GBML is chosen, the following functions are executed for

number_of_generations times:

1) <Cs::a0c> is the apportionment of credit system. Must be given input
rectangles and time. For the number of messages (usually number
of rule strings in population), <Cs::aoc> calculates the maximum bid
(rule_strength * bid_percentage), pays the bid from winning rule
string, <Cs::translate> translates winning rule and return order,
calculates payoff score (for statistical reasons), calculates the
number of offsets of <Cs::translate> order from optimal order, and
reward (positive or negative based on payoff threshold) the winning
rule string (rule_strength * reward_percentage)

2) <Cs::print_rules> (as explained in pure GA description)

3) <Cs::stats> calculates payoff average and standard deviation for all
rectangle patterns in one CS generation.

4) <Cs::savePay> records current CS generation, payoff average,
standard deviation, and offset to file <output/payoffs>

5) <Genetic::reproduce> (as explained in pure GA description)

6) <Genetic::crossover> (as explained in pure GA description)
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7
8)

<Genetic::mutate> (as explained in pure GA description)
<Cs::reset_strength> resets all rule string strengths to the original
strength and modifies the payoff threshold (payoff_threshold =
multiplier * payoff_threshold)
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